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Abstract & References

We study the Dirichlet and Neumann eigenvalues for the Laplace
operator in bounded domains of Euclidean d-space whose boundary
is a flexible polyhedron. The main result is that both the Dirichlet
and Neumann spectra of the Laplace operator in such a domain do
not necessarily remain unaltered during the flex of its boundary.

The talk is based on the article: V. Alexandrov. The spectrum of
the Laplacian in a domain bounded by a flexible polyhedron in Rd

does not always remain unaltered during the flex. Journal of
Geometry, 111, no. 2. Paper No. 32 (2020).
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What is a polyhedron

In this talk, a polyhedron is a connected boundary-free compact
polyhedral (d − 1)-manifold in Rd , d > 2. Self-intersections of any
type are not excluded.

If the boundary of a bounded connected open set D ⊂ Rd is a
polyhedron P, we write D = [[P]] and say that D is the domain
bounded by the polyhedron P.
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What is a flexible polyhedron

A polyhedron P0 is called flexible if its spatial shape can be
changed continuously by changing its dihedral angles only.

In other words, P0 is flexible if
• P0 belongs to a continuous family {Pt}t∈[0,1] of polyhedra Pt ,
such that each face of Pt is congruent to the corresponding (by
continuity) face of P0; and
• P0 and Pt are not congruent to each other for all 0 < t 6 1.

The above-mentioned continuous family {Pt}t∈[0,1] is called the
flex of the polyhedron P0.

A polyhedron is called rigid if it is not flexible.
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Some basic facts about flexible polyhedra: slide 1

(a) flexible polyhedra do exist (R. Bricard, 1897) and (R. Connelly,
1977); moreover, they can have any genus and can be
non-orientable (M.I. Shtogrin, 2015);
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Some basic facts about flexible polyhedra: slide 2

(b) flexible polyhedra are rare objects:
• every compact convex polyhedron is rigid (A.L. Cauchy,

1813); and
• almost all simply connected polyhedra in R3 are rigid

(H. Gluck, 1975);

(c) for every flex, every orientable flexible polyhedron necessarily
keeps unaltered the total mean curvature (R. Alexander, 1985);
i. e., the quantity ∑

`

|`|(π − α(`))

remains constant during every flex, where |`| is the length of the
edge `, α(`) is the value of the interior dihedral angle at the edge
`, and the sum extends to all edges of the polyhedron;
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Some basic facts about flexible polyhedra: slide 3

(d) for every flex, every orientable flexible polyhedron necessarily
keeps unaltered the volume of the domain they bound (for R3:
I.Kh. Sabitov, 1996 and R. Connelly et al., 1997; for Rd , d > 4:
A.A. Gaifullin, 2014);

(e) for every flex, every orientable flexible polyhedron necessarily
keeps unaltered the Dehn invariants (A.A. Gaifullin &
L.S. Ignashchenko, 2018); i. e., the quantity∑

`

|`|f (ϕ(`))

remains constant during every flex, where |`| is the length of the
edge `, ϕ(`) is the value of the interior dihedral angle at the edge
`, f : R→ R is a Q-linear fuction suth that f (π) = 0, and the sum
extends to all edges of the polyhedron;
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Some basic facts about flexible polyhedra: slide 4

(f) flexible polyhedra do exist in all spaces of constant curvature of
dimension > 3 and in pseudo-Euclidean spaces of dimension > 3;
moreover, in many of these spaces they possess properties similar
to properties (a)–(e).
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The problem we are studying

Being motivated by the properties (c), (d), and (e), we would like
to find new invariants of flexible polyhedra in Rd , d > 3, that is,
quantities which are preserved under every flex.

In our opinion, it is natural to check for the role of such invariants
the Dirichlet and Neumann eigenvalues of the Laplace operator in
the domain [[P0]] ⊂ Rd , bounded by the flexible polyhedron P0,
because:

• the statement that the spectrum of the Laplacian remains
unaltered during the flex agrees with the Weyl law on the
asymptotics of eigenvalues of the Laplacian;

• if the spectrum of the Laplacian remains unaltered during the
flex, the Weyl law provides us with a new proof of the Bellows
Conjecture.
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Recall the Weyl law

The Weyl law reads that, under certain assumptions on the
boundary ∂Ω of a bounded domain Ω ⊂ Rd , the following
asymptotic formula holds true for k →∞:

N(k) =
vold(Ω)

Γ
(
d+2

2

)( k

2
√
π

)d

∓ vold−1(∂Ω)

4Γ
(
d+1

2

) ( k

2
√
π

)d−1

+ o(kd−1).

Here N(k) is the eigenvalue counting function, that is the number
of eigenvalues, which do not exceed k2 (repeating each eigenvalue
according to its multiplicity), volp denotes the p-dimensional
volume of a set, and Γ denotes the Euler gamma function.
The minus sign corresponds to the Dirichlet problem (∆u = −ν2u
in Ω, u|∂Ω = 0), while the plus sign corresponds to the Neumann
problem (∆u = −ν2u in Ω, ∂u

∂n |∂Ω = 0).
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The main result

Theorem (Alexandrov, 2020)

For every d > 3, ε > 0, and every embedded flexible polyhedron
P0 ⊂ Rd there is an embedded flexible polyhedron P̃0 ⊂ Rd and its
flex {P̃s}s∈[0,1) such that

• the combinatorial structure of P̃0 is a subdivision of the
combinatorial structure of P0;

• the Hausdorff distance between the sets P̃0 and P0 is less than ε;

• both Dirichlet and Neumann spectra of the d-dimensional
Laplacian in the domain [[P̃s ]] ⊂ Rd do not remain unaltered when
s changes in the interval [0, 1).
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The proof is based on the following vesrion of the Weyl law:

Theorem (Fedosov, Sov. Math., Dokl. 5, 988–990 (1964)):

Let d > 2, 0 6 p 6 d − 1, and let a bounded domain D ⊂ Rd be
such that its boundary ∂D is a polyhedron. Let {F d−2

i }i be the set
of all (d − 2)-dimensional faces of ∂D, and let ϕi stand for the
value of the dihedral angle of D at F d−2

i . Then the following
asymptotic formula, involving the eigenvalue counting function
N(k), holds true as k →∞ for both the Dirichlet and Neumann
problems:

1

Γ(p + 1)

k∫
0

(k − τ)p dN(τ) =
d∑

l=1

al
Γ(l + 1)

Γ(p + l + 1)
kp+l + O(kd−1).
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Theorem (Fedosov, Sov. Math., Dokl. 5, 988–990 (1964)) –
continuation from the previous slide:

The coefficients ad , ad−1, and ad−2 are given by the following
explicit formulas:

ad =
vold(D)

2dπd/2Γ
(
d
2 + 1

) ,
ad−1 = ∓ vold−1(∂D)

2d+1π(d−1)/2Γ
(
d+1

2

) , (∗)

ad−2 =
1

2d+1πd/2Γ
(
d
2

)∑
i

ϕ2
i − π2

3ϕi
vold−2

(
F d−2
i

)
.

In the formula (∗), the minus sign corresponds to the Dirichlet
problem, while the plus sign corresponds to the Neumann problem.
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The above theorem was a part of Ph.D. thesis of Professor Boris
V. Fedosov (1938–2011), a well-known Moscow mathematician,
who made significant contribution to the theory of partial
differential equations and differential geometry, including index
theory and deformation quantization.

You can find more details about his life and scientific heritage in
his obituary

M.S. Agranovich, L.A. Ăızenberg, G.L. Alfimov, M.I. Vishik, et al.
Boris Vasil’evich Fedosov (obituary).
Russian Mathematical Surveys. 67, 167–174 (2012).
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Back to the main result

Theorem (Alexandrov, 2020)

For every d > 3, ε > 0, and every embedded flexible polyhedron
P0 ⊂ Rd there is an embedded flexible polyhedron P̃0 ⊂ Rd and its
flex {P̃s}s∈[0,1) such that

• the combinatorial structure of P̃0 is a subdivision of the
combinatorial structure of P0;

• the Hausdorff distance between the sets P̃0 and P0 is less than ε;

• both Dirichlet and Neumann spectra of the d-dimensional
Laplacian in the domain [[P̃s ]] ⊂ Rd do not remain unaltered when
s changes in the interval [0, 1).
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Conclusion

We knew before that the total mean curvature, volume, and Dehn
invariants of every flexible polyhedron are preserved during its
flexes.

Now we know that, for some flexible polyhedra, eigenvalues of the
Laplace operator are nonconstant during flexes.

Everybody is welcome to look for a new nontrivial geometric
quantity corresponding to a flexible polyhedron in R3, such that
this quantity remains constant during all its flexes.
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The end.

Thank you for attention!


