TROPICAL GEOMETRY EXERCISES

ICERM NONLINEAR ALGEBRA BOOTCAMP

For these exercises you are encouraged to look at the help of the packages mentioned during the talk.
(1) Consider \mathbb{Q} with the 3 -adic valuation. Draw the tropicalizations of the curves $V(f) \subset \mathbb{P}^{2}$ for the following f :
(a) $f=3 x+6 y-5 z$;
(b) $f=3 x^{2}+4 x y+6 y^{2}+7 x z+8 y z+9 z^{2}$;
(c) $f=81 x^{3}+9 x^{2} y+18 x y^{2}-81 y^{3}+3 x^{2} z+x y z+6 y^{2} z+$ $4 x z^{2}+7 y z^{2}+9 z^{3}$.
(2) Prove the tropical quadratic formula: The roots of $a \odot x^{2} \oplus$ $b \odot x \oplus c$ are

$$
\begin{cases}b-a, c-b & \text { if } 2 b \leq a+c \\ 1 / 2(c-a) & \text { if } 2 b>a+c\end{cases}
$$

What is the tropical cubic formula? Quartic? Quintic? Are you surprised by the fact that you can write down a tropical quintic formula?
(3) Consider the tropicalization of the cubic surface $V\left(t^{143} x_{0}^{3}+\right.$ $x_{0}^{2} x_{1}+t^{64} x_{0}^{2} x_{2}+t^{122} x_{0}^{2} x_{3}+x_{0} x_{1}^{2}+t^{2} x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+t^{15} x_{0} x_{2}+$ $t^{55} x_{0} x_{2} x_{3}+t^{107} x_{0} x_{3}^{2}+t^{36} x_{1}^{3}+t^{23} x_{1}^{2} x_{2}+t^{39} x_{1}^{2} x_{3}+t^{16} x_{1} x_{2}^{2}+$ $\left.t^{14} x_{1} x_{2} x_{3}+t^{48} x_{1} x_{3}^{2}+t^{12} x_{2}^{3}+t^{12} x_{2}^{2} x_{3}+t^{49} x_{2} x_{3}^{2}+t^{95} x_{3}^{3}\right) \subseteq \mathbb{P}_{\mathbb{C}(t)}^{3}$. How many two-dimensional cells does it have? How many onedimensional cells? How many vertices? Smooth cubic surfaces famously contain 27 lines; can you find the tropicalization of any of these?
(4) Let $I=\left\langle x_{i j}-x_{1 i}+x_{1 j}: 2 \leq i<j \leq n\right\rangle \subseteq \mathbb{C}\left[x_{12}^{ \pm 1}, \ldots, x_{(n-1) n}^{ \pm 1}\right]$ for $n \geq 5$. Compute $\operatorname{trop}(V(I))$ for the first few n. How many maximal cones does each have? Can you make/prove a conjecture?
(5) Consider the ideal $I=\left\langle 3 x_{1}+2 x_{2}-5 x_{3}+4 x_{4}, x_{1}+x_{2}-x_{3}+\right.$ $\left.17 x_{4}, 5 x_{1}+10 x_{2}+15 x_{3}-x_{4}\right\rangle \subseteq \mathbb{C}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, x_{3}^{ \pm 1}, x_{4}^{ \pm 1}\right]$, where \mathbb{C} has the trivial valuation. Is the tropicalization $\operatorname{trop}(V(I))$ equal to the intersection of the tropicalizations of the hypersurfaces given by the three generators of this ideal?
(6) Consider the ideal $I=\left\langle t^{101} x^{2}+37 x y+43 x+t^{137} y^{2}+71 y+\right.$ $t^{56}, t^{29} x^{2}+37 t^{340} x y+43 t^{340} x+t^{725} y^{2}+17 t^{340} y+t^{31}, t^{2} x+t^{140} y+$ $3\rangle \subset \mathbb{C}(t)[x, y]$. Is the variety $V(I) \subset \mathbb{A}^{2}$ empty?
(7) Consider the tropical hyperplane arrangement given by the hyperplanes $H_{i}=\operatorname{trop}\left(V\left(l_{i}\right)\right)$ for $1 \leq i \leq 4$, where \mathbb{Q} has the 2-adic valuation:
(a) $l_{1}=3 x+2 y+1$;
(b) $l_{2}=5 x+7 y+2$;
(c) $l_{3}=x+4 y+12$;
(d) $l_{4}=8 x-y+4$.

How many regions does this hyperplane have?

