Bootcamp Exercises: Real and Convex Algebraic Geometry

Cynthia Vinzant, September 6, 2018

0. (Warm up) Using an SDP solver, for $c = (1, 1, \pm 1)$, find the solution to

 $\max \quad c_1 x + c_2 y + c_3 z \quad \text{such that} \quad \begin{pmatrix} 1 & x & y \\ x & 1 & z \\ y & z & 1 \end{pmatrix} \succeq 0.$

1. (Spectrahedral Sun) Our semester logo is the variety of the polynomial

$$\begin{split} f &= 8 \left(-x^6 - y^6 - z^6 + x^4 y^2 + x^4 z^2 + x^2 y^4 + x^2 z^4 + y^4 z^2 + y^2 z^4 - 10 x^2 y^2 z^2 \right. \\ &\quad \left. + 3 (x^4 + y^4 + z^4) + 2 (x^2 y^2 + x^2 z^2 + y^2 z^2) - 3 (x^2 + y^2 + z^2) + 1 \right). \end{split}$$

This is also the determinant of the 7×7 matrix $A(x, y, z) = \sum_{i=1}^{7} \ell_i e_i e_i^T + \ell_8 \mathbf{11}^T$, where e_1, \ldots, e_7 are the seven unit coordinate vectors in \mathbb{R}^7 , **1** is the all ones vector, and ℓ_1, \ldots, ℓ_8 are the eight affine linear polynomials of the form $1 \pm x \pm y \pm z$. This surface bounds a spectrahedron $\mathcal{S} = \{(x, y, z) \in \mathbb{R}^3 : A(x, y, z) \succeq 0\}$.

- For each rank r = 1, ..., 7, describe the locus of rank $\leq r$ matrices in the linearspace $\{A(x, y, z) : (x, y, z) \in \mathbb{C}^3\}$.
- What are the extreme points of S? What are their ranks?
- Any cost vector $c = (c_1, c_2, c_3) \in \mathbb{R}^3$ gives rise to the semidefinite program

max $c_1x + c_2y + c_3z$ such that $A(x, y, z) \succeq 0$.

Solve this semidefinite program for c = (4, 5, 6). Experimentally, for each rank r, find the probability that for a random cost vector $c \in \mathbb{R}^3$, the optimal solution is a matrix of rank r.

- What is the algebraic boundary of the convex dual of S?
- (*) Can you write S as a spectrahedron using 6×6 matrices?
- The eight planes $\ell_1 = 0, \ldots, \ell_8 = 0$ bound a regular octahedron. What are the analogues of this surface for the other platonic solids?
- **2.** (Algebraic boundaries) Let $f = x^3 3x + y^2 + z^2$ and $g = 1 (x 1)^2 y^2$.
 - For $S = \{(x, y, z) \in \mathbb{R}^3 : f \ge 0, g \ge 0\}$, find the algebraic boundary of the projection of S onto the plane $\{x + y + z = 0\}$.
 - Describe the convex body dual to \mathcal{S} .
 - What is the algebraic boundary of the convex hull of the curve defined by f = 0 and g = 0? And its dual?

- **3.** (Random Spectrahedra)
 - Find $d = d_1(n)$ so that a generic *d*-dimensional affine space in the space of $n \times n$ complex symmetric matrices has finitely many matrices of rank one. How many will there be?
 - For n = 3, 4, how many can be real? What if the linearspace must contain a positive definite matrix? Try to experiment!
 - What about rank two?

4. (Rigidity connections) Given five points $p_1 = (x_1, y_1), \ldots, p_5 = (x_5, y_5) \in \mathbb{R}^2$, for each $1 \leq i \leq j \leq 5$, define

$$d_{ij} = ||p_i - p_j||_2^2 = (x_i - x_j)^2 + (y_i - y_j)^2,$$

and consider the 4×4 matrix A = A(d) with (i, j) th entry equal to $A_{ij} = d_{i5} + d_{j5} - d_{ij}$.

- Check that $A_{ij} = \langle p_i p_5, p_j p_5 \rangle$ and use this to show that A is a positive semidefinite matrix of rank ≤ 2 .
- What is the dimension of the locus of rank-2 matrices A(d) with

$$d_{12} = d_{13} = d_{24} = d_{34} = d_{35} = d_{45} = 1?$$

For $p_1 = (0, 0)$ and $p_2 = (0, 1)$, find points p_3, p_4, p_5 that maximize $d_{15} + 2d_{25}$.

• (*) An easier version of Alt's problem is to fix two base points, (for example, $p_1 = (0,0)$, $p_2 = (0,1)$), and ask for a four-bar linkage that whose apex p_5 passes through *five* prescribed points in the plane. How does this condition translate to conditions on distance coordinates d_{ij} ? Can semidefinite programming help to find a solution to this problem?