Bootcamp Exercises: Real and Convex Algebraic Geometry
 Cynthia Vinzant, September 6, 2018

0. (Warm up) Using an SDP solver, for $c=(1,1, \pm 1)$, find the solution to

$$
\max \quad c_{1} x+c_{2} y+c_{3} z \quad \text { such that } \quad\left(\begin{array}{lll}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right) \succeq 0 .
$$

1. (Spectrahedral Sun) Our semester logo is the variety of the polynomial

$$
\begin{aligned}
f= & 8\left(-x^{6}-y^{6}-z^{6}+x^{4} y^{2}+x^{4} z^{2}+x^{2} y^{4}+x^{2} z^{4}+y^{4} z^{2}+y^{2} z^{4}-10 x^{2} y^{2} z^{2}\right. \\
& \left.+3\left(x^{4}+y^{4}+z^{4}\right)+2\left(x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}\right)-3\left(x^{2}+y^{2}+z^{2}\right)+1\right) .
\end{aligned}
$$

This is also the determinant of the 7×7 matrix $A(x, y, z)=\sum_{i=1}^{7} \ell_{i} e_{i} e_{i}^{T}+\ell_{8} \mathbf{1 1}^{T}$, where e_{1}, \ldots, e_{7} are the seven unit coordinate vectors in $\mathbb{R}^{7}, \mathbf{1}$ is the all ones vector, and $\ell_{1}, \ldots, \ell_{8}$ are the eight affine linear polynomials of the form $1 \pm x \pm y \pm z$. This surface bounds a spectrahedron $\mathcal{S}=\left\{(x, y, z) \in \mathbb{R}^{3}: A(x, y, z) \succeq 0\right\}$.

- For each rank $r=1, \ldots, 7$, describe the locus of rank $\leq r$ matrices in the linearspace $\left\{A(x, y, z):(x, y, z) \in \mathbb{C}^{3}\right\}$.
- What are the extreme points of \mathcal{S} ? What are their ranks?
- Any cost vector $c=\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{R}^{3}$ gives rise to the semidefinite program

$$
\max \quad c_{1} x+c_{2} y+c_{3} z \quad \text { such that } A(x, y, z) \succeq 0
$$

Solve this semidefinite program for $c=(4,5,6)$. Experimentally, for each rank r, find the probability that for a random cost vector $c \in \mathbb{R}^{3}$, the optimal solution is a matrix of rank r.

- What is the algebraic boundary of the convex dual of \mathcal{S} ?
- (*) Can you write \mathcal{S} as a spectrahedron using 6×6 matrices?
- The eight planes $\ell_{1}=0, \ldots, \ell_{8}=0$ bound a regular octahedron. What are the analogues of this surface for the other platonic solids?

2. (Algebraic boundaries) Let $f=x^{3}-3 x+y^{2}+z^{2}$ and $g=1-(x-1)^{2}-y^{2}$.

- For $\mathcal{S}=\left\{(x, y, z) \in \mathbb{R}^{3}: f \geq 0, g \geq 0\right\}$, find the algebraic boundary of the projection of \mathcal{S} onto the plane $\{x+y+z=0\}$.
- Describe the convex body dual to \mathcal{S}.
- What is the algebraic boundary of the convex hull of the curve defined by $f=0$ and $g=0$? And its dual?

3. (Random Spectrahedra)

- Find $d=d_{1}(n)$ so that a generic d-dimensional affine space in the space of $n \times n$ complex symmetric matrices has finitely many matrices of rank one. How many will there be?
- For $n=3,4$, how many can be real? What if the linearspace must contain a positive definite matrix? Try to experiment!
- What about rank two?

4. (Rigidity connections) Given five points $p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{5}=\left(x_{5}, y_{5}\right) \in \mathbb{R}^{2}$, for each $1 \leq i \leq j \leq 5$, define

$$
d_{i j}=\left\|p_{i}-p_{j}\right\|_{2}^{2}=\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2},
$$

and consider the 4×4 matrix $A=A(d)$ with (i, j) th entry equal to $A_{i j}=d_{i 5}+d_{j 5}-d_{i j}$.

- Check that $A_{i j}=\left\langle p_{i}-p_{5}, p_{j}-p_{5}\right\rangle$ and use this to show that A is a positive semidefinite matrix of rank ≤ 2.
- What is the dimension of the locus of rank-2 matrices $A(d)$ with

$$
d_{12}=d_{13}=d_{24}=d_{34}=d_{35}=d_{45}=1 ?
$$

For $p_{1}=(0,0)$ and $p_{2}=(0,1)$, find points p_{3}, p_{4}, p_{5} that maximize $d_{15}+2 d_{25}$.

- ${ }^{*}$) An easier version of Alt's problem is to fix two base points, (for example, $\left.p_{1}=(0,0), p_{2}=(0,1)\right)$, and ask for a four-bar linkage that whose apex p_{5} passes through five prescribed points in the plane. How does this condition translate to conditions on distance coordinates $d_{i j}$? Can semidefinite programming help to find a solution to this problem?

