Graphical models exercises

Elina Robeva

Problem 0.1. Let $G=(V, E)$ be an undirected graph and suppose that A, B, and C are disjoint subsets of V such that C does not separate A and B. Construct a probability distribution satisfying all the global Markov statements of G and not satisfying $X_{A} \Perp X_{B} \mid X_{C}$. Hint: Try constructing a Gaussian distribution.

Problem 0.2. Prove the following statements regarding marginals and conditionals of Gaussian distributions (if you haven't done so in the past).
(a). The marginal of a Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$ is a Gaussian distribution:

$$
X_{A} \sim \mathcal{N}\left(\mu_{A}, \Sigma_{A, A}\right)
$$

(b). The conditional of a Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$ is a Gaussian distribution:

$$
\left(X_{A} \mid X_{B}=x_{B}\right) \sim \mathcal{N}\left(\mu_{A}+\Sigma_{A, B}\left(\Sigma_{B, B}\right)^{-1}\left(x_{B}-\mu_{B}\right), \Sigma_{A, A}-\Sigma_{A, B}\left(\Sigma_{B, B}\right)^{-1} \Sigma_{B, A}\right) .
$$

(c). Independence in a Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$ is equivalent to determinants vanishing:

$$
X_{a} \Perp X_{b} \Longleftrightarrow \Sigma_{a, b}=0
$$

(d). Conditional independence in a Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$ is equivalent to a rank condition:

$$
X_{A} \Perp X_{B}\left|X_{C} \Longleftrightarrow \operatorname{rank}\left(\Sigma_{A \cup C, B \cup C}\right) \leq|C| .\right.
$$

Problem 0.3. Given a set \mathcal{C} of conditional independence statements for a Gaussian random vector $X \sim \mathcal{N}(\mu, \Sigma)$, we can build the conditional independence ideal $I_{\mathcal{C}}$ containing all equations corresponding to these statements. Often times finding the primary decomposition of $I_{\mathcal{C}}$ gives additional conditional independence statements that X satisfies.

For the following problems it might be easier to use a computer algebra system like Macaulay2. Let $X \sim \mathcal{N}(\mu, \Sigma)$ be a 3 -dimensional Gaussian random vector.
(a). Show that the statements $X_{1} \Perp X_{2} \mid X_{3}, X_{2} \Perp X_{3}$ imply that $X_{2} \Perp\left(X_{1}, X_{3}\right)$.
(b). Show that $X_{1} \Perp X_{3}\left|X_{2}, X_{2} \Perp X_{3}\right| X_{1}$ implies $\left(X_{1}, X_{2}\right) \Perp X_{3}$.
(c). Show that $X_{1} \Perp X_{3} \mid X_{2}, X_{1} \Perp X_{3}$ implies that either $X_{1} \Perp\left(X_{2}, X_{3}\right)$ or $\left(X_{1}, X_{2}\right) \Perp X_{3}$.

Problem 0.4. Consider the graph

(a). Compute the ideal of the parametrization I_{G} and the global Markov ideal $I_{\text {global }(G)}$ if the random variable $X \in[2] \times[2] \times[2] \times[2]$ has binary coordinates.
(b). Compute the ideal of the parametrization I_{G} and the global Markov ideal $I_{\text {global }(G)}$ if the random variable $X \sim \mathcal{N}(0, \Sigma)$ is Gaussian.

The Macaulay2 package "GraphicalModels" might be useful.

Problem 0.5. Consider the graph

(a). Compute the global Markov statements for this DAG.
(b). Compute the ideal of the parametrization I_{G} and the global Markov ideal $I_{\text {global }(G)}$ if the random variable $X \in[2] \times[2] \times[2] \times[2] \times[2]$ has binary coordinates.
(c). Compute the ideal of the parametrization I_{G} and the global Markov ideal $I_{\text {global }(G)}$ if the random variable $X \sim \mathcal{N}(0, \Sigma)$ is Gaussian.

The Macaulay2 package "GraphicalModels" might be useful.

Problem 0.6. Let $X \sim \mathcal{N}(\mu, \Sigma)$ be a Gaussian random vector, and let $G=(V, E)$ be a DAG.
(a). Assume that X satisfies the directed global Markov property with respect to G.

1. Show that X satisfies the directed local Markov property with respect to to G, i.e. for every $v \in V$,

$$
X_{v} \Perp X_{\mathrm{nd}(v) \backslash \operatorname{pa}(v)} \mid X_{\mathrm{pa}(v)} .
$$

Here $\operatorname{nd}(v)$ is the set of non-descendants of v, i.e. all vertices to which there isn't a directed path from v, and $\mathrm{pa}(v)$ is the set of parents of v, i.e. all vertices u such that there is an edge $u \rightarrow v$.
2. Now, define the residuals

$$
\epsilon_{i}:=X_{i}-\Sigma_{i, \mathrm{pa}(i)}\left(\Sigma_{\mathrm{pa}(i), \mathrm{pa}(i)}\right)^{-1} X_{\mathrm{pa}(i)} .
$$

Show that they are Gaussian random variables and are pairwise independent.
(b). Show that if there exist $\lambda_{i j} \in \mathbb{R}$ for all edges $(i, j) \in E$ and independent Gaussian random variables $\epsilon_{1}, \ldots, \epsilon_{n}$ such that

$$
X_{i}=\sum_{j \in \operatorname{pa}(i)} \lambda_{i j} X_{j}+\epsilon_{j},
$$

then X satisfies the directed local Markov property with respect to G.
Problem 0.7. Classify the Markov equivalence classes of DAGs on 4 vertices.
Problem 0.8. Let $G=(V, D, B)$ be an acylic mixed graph and let X be a Gaussian random vector with covariance matrix

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

where $\Lambda \in \mathbb{R}^{D}, \Omega \in P D(B)$.
(a). For a directed path $\pi=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{k}$, the path monomial m_{π} is defined as

$$
m_{\pi}=\lambda_{u_{0} u_{1}} \lambda_{u_{1} u_{2}} \cdots \lambda_{u_{k-1} u_{k}} .
$$

Show that the i, j-th entry of $(I-\Lambda)^{-1}$ equals

$$
\left((I-\Lambda)^{-1}\right)_{i, j}=\sum_{\text {directed paths } \pi \text { from } i \text { to } j} m_{\pi} .
$$

(b). For the following graph

compute $(I-\Lambda)^{-1}$ using part (a).
(c). A trek between two vertices i and j in a mixed graph G has the form

1. $i=u_{k} \leftarrow u_{k-1} \leftarrow \cdots \leftarrow u_{0} \rightarrow \cdots \rightarrow v_{\ell-1} \rightarrow v_{\ell}=j$, or
2. $i=u_{k} \leftarrow u_{k-1} \leftarrow \cdots \leftarrow u_{0} \leftrightarrow v_{0} \rightarrow \cdots \rightarrow v_{\ell-1} \rightarrow v_{\ell}=j$

In both cases k, ℓ are nonnegative integers. For a trek τ the trek monomial m_{τ} is:

$$
m_{\tau}=\lambda_{u_{k-1} u_{k}} \cdots \lambda_{u_{0} u_{1}} \omega_{u_{0} u_{0}} \lambda_{u_{0} v_{1}} \cdots \lambda_{v_{\ell-1} v_{\ell}}
$$

if the trek is of type 1 , and

$$
m_{\tau}=\lambda_{u_{k-1} u_{k}} \cdots \lambda_{u_{0} u_{1}} \omega_{u_{0} v_{0}} \lambda_{v_{0} v_{1}} \cdots \lambda_{v_{\ell-1} v_{\ell}}
$$

if the trek is of type 2 .
Show that the i, j-th entry of the covariance matrix $\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}$ equals

$$
\Sigma_{i, j}=\sum_{\operatorname{treks} \tau \text { between } i \text { and } j} m_{\tau}
$$

(d). For the graph from part (b). compute Σ in terms of the entries Λ and Ω using (c).

Trek separation. Let $G=(V, D, B)$ be a mixed graph. Let $A, B, C_{A}, C_{B} \subseteq V$. We say that $\left(C_{A}, C_{B}\right)$ trek separates A and B if every trek τ between a vertex in A and a vertex in B either goes through a vertex in C_{A} on its left side or through a vertex in C_{B} on its right side.
Theorem 0.9 ([3). The submatrix $\Sigma_{A, B}$ has rank at most r for all $\Sigma \in \mathcal{M}_{G}$ if and only if there exist C_{A}, C_{B} such that $\left(C_{A}, C_{B}\right)$ trek separates A and B, and $\left|C_{A}\right|+\left|C_{B}\right| \leq r$.
Problem 0.10. For the following graph

compute I_{G} and $I_{\operatorname{global}(G)}$ using the Macaulay2 package "GraphicalModels". Further, compute the trek separation statements and identify the generators of I_{G} corresponding to them.
Open Problems. A very good source of open problems regarding linear structural equation problems is Section 3 of [1].

References

[1] M. Drton. Algebraic Problems in Structural Equation Modeling. 2016
[2] S. Sullivant. Algebraic Statistics. 2018
[3] S. Sullivant, K. Talaska, and J. Draisma. Trek Separation for Gaussian Graphical Models. Annals of Statistics 2010

