Graphical models exercises

Elina Robeva

Problem 0.1. Let $G = (V, E)$ be an undirected graph and suppose that $A, B,$ and C are disjoint subsets of V such that C does not separate A and B. Construct a probability distribution satisfying all the global Markov statements of G and not satisfying $X_A \perp \!\!\!\!\!\!\! \perp X_B | X_C$.

Hint: Try constructing a Gaussian distribution.

Problem 0.2. Prove the following statements regarding marginals and conditionals of Gaussian distributions (if you haven’t done so in the past).

(a). The marginal of a Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$ is a Gaussian distribution:

$$X_A \sim \mathcal{N}(\mu_A, \Sigma_{A,A}).$$

(b). The conditional of a Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$ is a Gaussian distribution:

$$(X_A|X_B = x_B) \sim \mathcal{N}(\mu_A + \Sigma_{A,B}(\Sigma_{B,B})^{-1}(x_B - \mu_B), \Sigma_{A,A} - \Sigma_{A,B}(\Sigma_{B,B})^{-1}\Sigma_{B,A}).$$

(c). Independence in a Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$ is equivalent to determinants vanishing:

$$X_a \perp \!\!\!\!\!\!\! X_b \iff \Sigma_{a,b} = 0.$$

(d). Conditional independence in a Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$ is equivalent to a rank condition:

$$X_A \perp \!\!\!\!\!\!\! X_B | X_C \iff \text{rank}(\Sigma_{A\cup C,B\cup C}) \leq |C|.$$

Problem 0.3. Given a set \mathcal{C} of conditional independence statements for a Gaussian random vector $X \sim \mathcal{N}(\mu, \Sigma)$, we can build the conditional independence ideal $I_\mathcal{C}$ containing all equations corresponding to these statements. Often times finding the primary decomposition of $I_\mathcal{C}$ gives additional conditional independence statements that X satisfies.

For the following problems it might be easier to use a computer algebra system like Macaulay2. Let $X \sim \mathcal{N}(\mu, \Sigma)$ be a 3-dimensional Gaussian random vector.

(a). Show that the statements $X_1 \perp X_2 | X_3, X_2 \perp X_3$ imply that $X_2 \perp (X_1, X_3)$.

(b). Show that $X_1 \perp X_3 | X_2, X_2 \perp X_3 | X_1$ implies $(X_1, X_2) \perp X_3$.

(c). Show that $X_1 \perp X_3 | X_2, X_1 \perp X_3$ implies that either $X_1 \perp (X_2, X_3)$ or $(X_1, X_2) \perp X_3$.

1
Problem 0.4. Consider the graph

(b). Compute the ideal of the parametrization I_G and the global Markov ideal $I_{\text{global}(G)}$ if the random variable $X \sim \mathcal{N}(0, \Sigma)$ is Gaussian.

The Macaulay2 package "GraphicalModels" might be useful.

Problem 0.5. Consider the graph

(a). Compute the global Markov statements for this DAG.

(c). Compute the ideal of the parametrization I_G and the global Markov ideal $I_{\text{global}(G)}$ if the random variable $X \sim \mathcal{N}(0, \Sigma)$ is Gaussian.

The Macaulay2 package "GraphicalModels" might be useful.

Problem 0.6. Let $X \sim \mathcal{N}(\mu, \Sigma)$ be a Gaussian random vector, and let $G = (V, E)$ be a DAG.

(a). Assume that X satisfies the directed global Markov property with respect to G.

1. Show that X satisfies the \textit{directed local Markov property} with respect to to G, i.e. for every $v \in V$,

$$X_v \independent X_{\text{nd}(v) \setminus \text{pa}(v)}|X_{\text{pa}(v)}.$$

Here nd(v) is the set of non-descendants of v, i.e. all vertices to which there isn’t a directed path from v, and pa(v) is the set of parents of v, i.e. all vertices u such that there is an edge $u \rightarrow v$.

2
2. Now, define the *residuals*

\[\epsilon_i := X_i - \Sigma_{i,\text{pa}(i)}(\Sigma_{\text{pa}(i)},\text{pa}(i))^{-1}X_{\text{pa}(i)}. \]

Show that they are Gaussian random variables and are pairwise independent.

(b). Show that if there exist \(\lambda_{ij} \in \mathbb{R} \) for all edges \((i,j) \in E \) and independent Gaussian random variables \(\epsilon_1, \ldots, \epsilon_n \) such that

\[X_i = \sum_{j \in \text{pa}(i)} \lambda_{ij} X_j + \epsilon_j, \]

then \(X \) satisfies the directed local Markov property with respect to \(G \).

Problem 0.7. Classify the Markov equivalence classes of DAGs on 4 vertices.

Problem 0.8. Let \(G = (V,D,B) \) be an acyclic mixed graph and let \(X \) be a Gaussian random vector with covariance matrix

\[\Sigma = (I - \Lambda)^{-T} \Omega (I - \Lambda)^{-1}, \]

where \(\Lambda \in \mathbb{R}^D, \Omega \in PD(B) \).

(a). For a directed path \(\pi = u_0 \to u_1 \to \cdots \to u_k \), the *path monomial* \(m_\pi \) is defined as

\[m_\pi = \lambda_{u_0 u_1} \lambda_{u_1 u_2} \cdots \lambda_{u_{k-1} u_k}. \]

Show that the \(i,j \)-th entry of \((I - \Lambda)^{-1} \) equals

\[((I - \Lambda)^{-1})_{i,j} = \sum_{\text{directed paths } \pi \text{ from } i \text{ to } j} m_\pi. \]

(b). For the following graph

\[1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \]

compute \((I - \Lambda)^{-1} \) using part (a).

(c). A *trek* between two vertices \(i \) and \(j \) in a mixed graph \(G \) has the form

1. \(i = u_k \leftarrow u_{k-1} \cdots \leftarrow u_0 \to \cdots \to v_{\ell-1} \to v_{\ell} = j, \) or
2. \(i = u_k \leftarrow u_{k-1} \cdots \leftarrow u_0 \leftrightarrow v_0 \to \cdots \to v_{\ell-1} \to v_{\ell} = j \)
In both cases k, ℓ are nonnegative integers. For a trek τ the *trek monomial* m_{τ} is:

$$m_{\tau} = \lambda_{u_{k-1}u_k} \cdots \lambda_{u_0u_1} \omega_{u_0u_0} \lambda_{u_0v_1} \cdots \lambda_{v_{\ell-1}v_\ell}$$

if the trek is of type 1, and

$$m_{\tau} = \lambda_{u_{k-1}u_k} \cdots \lambda_{u_0u_1} \omega_{u_0v_0} \lambda_{v_0v_1} \cdots \lambda_{v_{\ell-1}v_\ell}$$

if the trek is of type 2.

Show that the i, j-th entry of the covariance matrix $\Sigma = (I - \Lambda)^{-T} \Omega (I - \Lambda)^{-1}$ equals

$$\Sigma_{i,j} = \sum_{\text{treks } \tau \text{ between } i \text{ and } j} m_{\tau}.$$

(d). For the graph from part (b). compute Σ in terms of the entries Λ and Ω using (c).

Trek separation. Let $G = (V, D, B)$ be a mixed graph. Let $A, B, C_A, C_B \subseteq V$. We say that (C_A, C_B) *trek separates* A and B if every trek τ between a vertex in A and a vertex in B either goes through a vertex in C_A on its left side or through a vertex in C_B on its right side.

Theorem 0.9 ([3]). The submatrix $\Sigma_{A,B}$ has rank at most r for all $\Sigma \in \mathcal{M}_G$ if and only if there exist C_A, C_B such that (C_A, C_B) trek separates A and B, and $|C_A| + |C_B| \leq r$.

Problem 0.10. For the following graph

compute I_G and $I_{\text{global}(G)}$ using the Macaulay2 package ”GraphicalModels”. Further, compute the trek separation statements and identify the generators of I_G corresponding to them.

Open Problems. A very good source of open problems regarding linear structural equation problems is Section 3 of [1].

References

