The Model

Training data for the model are the time dependent FG simulation data \(X \) together with residuals \(R \) and constraints \(C \).

During training we infer the CG coordinates \(X \) together with the parameters \(\theta \) for the coarse-to-fine map and the CG dynamics, whose form is parametrized. The probabilistic graphical model is shown on the right.

Virtual Observables

Virtual Observables can be used to incorporate constraints or residulas into our model. For instance for a residual \(R_t \) a new variable \(R_t^\prime \) can be defined as:

\[
R_t^\prime = R_t(X) + \sigma_R \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, I)
\]

We assume that \(R_t^\prime \) has been virtually observed and \(R_t = 0 \) leads to an augmented version of our data. This implies the virtual likelihood:

\[
p(R_t = 0 | X, \sigma_R) = \mathcal{N}(0 | R_t(X), \sigma_R^2 I)
\]

The parameter \(\sigma_R \) determines the intensity of the enforcement.

Incorporating physical constraints in deep probabilistic models of coarse-grained dynamics

Introduction

Data-based discovery of effective, coarse-grained (CG) models of high-dimensional dynamical systems presents a unique challenge in the context of multiscale problems.

We present a generative, probabilistic Bayesian machine learning framework, which employs fine-grained (FG) simulation data in combination with virtual observables\(^2\) to account for constraints. Our model simultaneously identifies a probabilistic coarse-to-fine map as well as an evolution law for the CG dynamics. The former can be defined using a deep neural net to endow great expressiveness and flexibility\(^3\).

By including physical constraints we are able to train our model in the Small Data regime and generate extrapolative predictions.

Conclusion

We introduced a Bayesian machine learning framework for coarse-graining high-dimensional multiscale systems based on FG simulation data and a-priori available physical constraints.

Using only a small number of FG simulations as training data, we can learn a coarse-to-fine map as well as a coarse evolution law and can therefore produce probabilistic predictions based on the generated CG representation. We applied the framework to a Particle system and a series of images of a nonlinear pendulum and showed that the predictions are accurate under extrapolative conditions.

The proposed method is fully probabilistic and therefore leads to predictive distributions, i.e. it can quantify the inevitable uncertainty due to the information loss during coarse-graining.

S. Kaltenbach*, P.-S. Koutsourelakis
Professorship of Continuum Mechanics, Department of Mechanical Engineering, Technical University of Munich
*sebastian.kaltenbach@tum.de

References