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1 Abstract

A traveling bicycle will usually leave two paths behind it: one created by the back wheel and one created
by the front wheel. This leads to an intriguing question: when do the front wheel and the back wheel have
the same path? An obvious answer would be, when the bicycle travels in a straight line, but indeed there
are more complex paths that create a “unicycle” path with a bicycle.

This paper will explore these kinds of paths in which the front wheel path and the back wheel path
coincide. What are the properties of such of path? First, we shall establish a discrete, non-smooth version
of our question in which the path is composed of straight segments and circle arcs. Using this construction,
we prove theorems about the complexity of the path including exponential growth of both the length of the
path and its total absolute curvature.

In the case when the path is a smooth C∞ curve, we prove linear increase of the number of points of
inflection.

2 Introduction

In his paper on the subject, David Finn begins by recounting a scene from a Sherlock Holmes mystery in
which Watson and Holmes are attempting to figure out which direction a bicycle was traveling by examining
the tracks left on the ground [1]. Finn goes on to imagine a similar scenario in which the famous crime fighting
team are presented with only one tire track. We will call this type of path a unicycle path. Excluding the
case in which the perpetrator is actually riding a unicycle, what can be deduced about the path?

We can begin with simple properties of a bicycle to establish our mathematical model of its motion. The
front and back wheel each touch the ground at exactly one point and the frame connecting them is rigid.
The rear wheel remains in line with the frame, but the front wheel may turn. We assume that the ground
is flat and analyze the tire path entirely in R2.

In our construction the bicycle is of unit length so the distance between the front and back wheel is
always 1. We initially position the bicycle on the horizontal axis with the rear wheel sitting at the origin
and the front wheel located at (1, 0).

Definition The seed curve, γ0, of a unicycle path is the curve from which the rest of the path is constructed.
It is a piecewise smooth curve with endpoints (0, 0) and (1, 0) and with infinite zero derivative at each of
these end points. It may self intersect and is not necessarily a graph. When the bicycle begins its motion,
the front wheel moves so that the back wheel traces along this seed curve. See Figure 1.

The new path created by the front wheel as the back wheel traces the seed is called the first iteration, γ1,
of the seed curve. By requiring γ0 to have an infinite derivative of zero at both γ0(0) and γ0(1), we force the
curve to be flat at each end point, lying tangent to the x-axis at the beginning and end of every iteration.
At the end of the first iteration, the front wheel of the bicycle will sit at (2, 0) and the back wheel at (1, 0).
This process continues such that in the second iteration, γ2, the front wheel moves so that the back wheel
will trace the first iteration and so on. After the nth iteration the bicycle will lie with its front wheel at
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Figure 1: Possible seed curves. Note that of these, only d.) creates a path that is infinitely smooth

(n+ 1, 0) and back wheel at (n, 0) and the tangent to the path at these end points is y = 0. It is important
to remember that in this construction the back wheel is dictating the movement of the bicycle and not vice
versa. With this construction, the unicycle path is necessarily continuous and infinite.

In his paper, Finn draws upon the obvious fact that for any seed curve γ0 ∈ C∞, the next iteration, γ1,
is equal to γ1 = γ0 + γ′0/|γ′0| [1]. This comes from the fact that the new curve is always a unit away along
the tangent from the old curve. In this paper, for simplicity, we will assume that γ0, γ1, γ2, γ3, . . . are all
parameterized by arc length. We will call the union of the seed curve and all subsequent iterations, i.e. the

entire bicycle path, Γ =

∞⋃
n=0

γn.

Figure 2: Finn’s construction of a smooth bicycle unicycle track [1]

Little is known about bicycle curves constructed from continuously differentiable seed curves. A straight
line segment seed curve will force the bicycle to ride a straight line infinitely, but it can be seen in Figure
2 that even a small perturbation in a straight line segment seed curve causes the resulting bicycle paths to
behave wildly in only a few iterations.

In [2], Mark Levi and Sergei Tabachnikov conjecture that the amplitude of Γ for γ0 ∈ C∞ is unbounded;
in other words unless γ0 is a straight line segment, Γ is not contained in any horizontal strip. In the same
paper, Levi and Tabachnikov also conjecture that unless γ0 ∈ C∞ is a straight line segment, Γ is not a the
graph of a function, fails to be an embedded curve, and, furthermore, that the curvature of Γ is unbounded.
The truth of these conjectures is not yet known and they prove difficult to study. However, Levi and
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Tabachnikov successfully prove the following propositions about the complexity of bicycle curves in C∞.

Proposition 1 (a) (Levi,Tabachnikov) Denote by Z(γn) the number of intersection points of the curve
γn with the x-axis (excluding the end points of the iteration); assume that Z(γn) is finite. One has Z(γn+1) >
Z(γn) for any non-trivial smooth bicycle path [2].

(b) Denote by E(γn) the number of local extrema of the curve γn; assume that E(γn) is finite. One has
E(γn+1) > E(γn) for any non-trivial smooth bicycle path [2].

While difficult to analyze in the smooth case, it is possible to prove Levi and Tabachnikov’s conjectures
about the growth of the curve’s amplitude through iterations and the curve’s failure to be an embedding if
we examine instead discrete unicycle paths. In the discrete path, γ0 is constructed strictly out of connected
line segments and circle arcs (see Figure 1 a-c). We will now go through the construction of discrete bicycle
paths and the proofs of these conjecture.

3 Discrete Model

In the discrete model of the unicycle path, the seed curve is composed of straight line segments and circle
arcs. If the rear wheel encounters a corner in the seed curve (or elsewhere in the path), then the bicycle
will pivot with the rear wheel fixed at the corner until the bike is tangent to the new path. This creates a
unit circle arc centered at the corner with angle equal to the difference between the tangents at the corner.
We will assume that the front wheel spins the least distance necessary to reach the appropriate tangent to
continue its path. We can also assume that the front wheel will always turn less than π because a turn of
π would imply that the bicycle is tangent to the new arc in the opposite direction; this is equivalent to the
bicycle moving backwards which we will disallow.

The discrete model seed curve must begin and end with straight line segments so that it necessarily has
infinite derivatives of zero at both end points. We will consider the horizontal straight line seed curve to be
the trivial case since in this case the bike will never deviate from the x-axis.

We will first state a few simple facts about the movement of the bicycle in this construction.

Lemma 1 (a) When the rear wheel traces a directed circle arc (clockwise or counterclockwise) of radius r,
the front wheel traces a concentric circle arc of radius

√
r2 + 1 in the same direction. See Figure 3.

Figure 3: Unit length bicycle draws concentric circle arc path

The new arc begins where the tangent of the starting point of the old arc intersects the new concentric
circle. And likewise, the new arc ends where the tangent of the ending point of the old arc intersects the

3



new concentric circle. This is obvious from simple geometry and Figure 3

(b) When the rear wheel traces a portion of the straight line y = mx+ b, the front wheel traces the same line
y = mx+ b exactly one unit ahead of the back wheel.

This statement implies that any straight line propagates on a ray to infinity. See Figure 4

Figure 4: Straight line propagation

Lemma 1 and the construction of the path show us that a straight line segment produces another straight
line segment in the next iteration, a circle arc produces a concentric circle arc, and a corner produces a unit
circle arc. We can draw a few simple consequences.

Lemma 2 (a) If the seed curve of a unicycle path is made up of line segments and circle arcs then all
subsequent iterations will be made only of straight lines and circle arcs.

(b) The number of arcs and line segments in a given iteration is equal to the number of arcs and line seg-
ments in the previous iteration plus the number of corners in the previous iteration.

Lemma 3 About every corner in the unicycle path the bike will trace infinite concentric circle arcs of growing
radius.

Proof This is due to the simple fact that a corner creates a circle arc in the next iteration and that this
circle arc creates a concentric circle arc in the next iteration and every following iteration. Lemma 1 (a)
states that these concentric circle arcs must grow in radius. �

Proposition 2 If a seed curve is contained in a circle of radius r centered at the origin, then the nth

iteration is contained in a circle of radius r + n centered at the origin.

Proof At any time the rear wheel sits on the bicycle path, the front wheel must lie on the unit circle centered
at the location of the rear wheel. If the seed curve is completely contained in a disc of radius r centered
at the origin, then all such unit circles centered about a point on the seed curve will be contained within a
disc of radius r + 1 centered at the origin. This implies that the first iteration is contained in the disc of
radius r + 1 centered about the origin. This same argument applies to any following iteration. Inductively,
it follows the nth iteration is contained in a disc of radius r + n centered about the origin. See Figure 5. �

Proposition 3 If γ0 is a discrete seed curve, even if γ0 is in C1, then γ1 and all subsequent iterations are
necessarily C0 and not C1. The consecutive arcs and/or line segments that make up γ1 and all subsequent
iterations necessarily meet at a corner.
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Figure 5: Linear growth rate of a disk containing a unicycle path

Proof Even if a discrete seed curve is C1, the second derivative of the curve is discontinuous where con-
secutive circle arcs and/or line segments meet. Thus, the first iteration will necessarily have a corner in the
unicycle path where consecutive circle arcs and/or line segments meet. See Figure 6.

In addition, a connection between two circle arcs and/or line segments in which the first derivative is
continuous cannot arise in any future iterations beyond the seed curve. In other words, circle arcs and line
segments will always be connected at a corner after the seed curve.

This is because, once a circle arc has been traced by the back wheel it hits a corner so the front wheel
must pivot while the back wheel is on the corner, making a circle arc of radius 1. See Figure 7. This
necessarily creates a new tangent at the connection point that is perpendicular to the frame of the bike (the
dashed vector in Figure 7). In order for this new tangent to also be the tangent of the circle arc that was
just traced by the front wheel (the dotted vector in Figure 7 ), the bike frame would have to lie on the radius
of the circle arc which is impossible because the bike must be lying tangent to the concentric arc created by
the back wheel. �

Figure 6: a.) & b.) The first iteration of a C1 discrete seed curve, c.) The first two iterations of a seed curve
with continuous first derivative.

It follows that the number of corners in a unicycle path doubles in consecutive iterations. Another obvious
corollary is the following:

Corollary 3.1 A non-trivial discrete unicycle path will have a corner on the x-axis in the first iteration of
the seed curve connecting a horizontal straight line segment to either an arc or a line segment of non-zero
slope.
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Figure 7: The front wheel must trace the unit circle but this circle is not tangent to the current dotted
tangent so a new corner must be made.

As a result of the existence of this corner, we will see that all non-trivial discrete unicycle paths necessarily
share a common portion of their path. We will call this portion, which is independent of the specific
seed curve, the invariant potion of the every non-trivial discrete unicycle path. We will now describe the
construction of this invariant set of arcs.

3.1 Invariant Behavior of All Discrete Unicycle Paths

We know from Corollary 3.1 that every unicycle path Γ must contain a corner on the the horizontal axis.
Let us call the first such corner x0. When the back wheel sits at x0, the front wheel will sit at a point on the
horizontal axis, let it be called x11. Then the front wheel will trace a circle arc c0 of radius 1 in the direction
that x0 turns with length equal to the angle at x0. We know that c0 necessarily meets the horizontal axis
with an initial tangent of π/2 from the axis. See Figure 8.

Figure 8: Construction of invariant portion in a generic non-trivial discrete bicycle path
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In the next iteration when the back wheel is sitting at x11, the front wheel will need to pivot to meet
with this π/2 tangent, created a unit circle arc of length π/2. Let us call this new circle arc c11.

This circle arc, c11 will appear in every discrete unicycle path regardless of the seed curve. In turn, this
arc makes tangent that is π/2 to the axis so every future iteration will begin with a circle arc of length π/2
similar to c11. We can call these arcs c21, c31, c41, c51, respectively. See Figure 9.

Figure 9: Invariant propagation of a corner on the x-axis

Next, every iteration that follows an iteration with an arc of π/2 must trace this arc after it has turned
π/2 itself. This will result in a new circle arc of length π/2 and radius

√
2 that is the second arc in all of

these iterations (this will not include the iteration that contains c11). See Figure 9. We can call these new
arcs c32, c42, c52, respectively.

The next iteration must trace these new arcs and this pattern will continue ad infinitum.
Though c0 does depend on x0 and the seed curve, c11 and all the curves that are created from it are

independent of this initial step. Therefore, there is an infinite pattern that is invariant in every non-trivial
discrete unicycle path.

Definition The invariant portion of a discrete unicycle path is the series of arcs created through iterations
of a corner that makes a π/2 tangent to the x-axis. It appears in every discrete unicycle path regardless of
the seed curve.

An obvious consequence of the existence of this invariant portion of the path are the following remarks.

Remark 1 An isometric copy of the invariant path described above, will appear about any corner in
which a straight line connects to either an arc or a straight line segment with different slope.

Remark 2Non-trivial discrete unicycle paths cannot be an embedding, that is all non-trivial discrete
unicycle paths must self-intersect.

We can now prove our first theorem saying that non-trivial, discrete unicycle paths are unbounded in all
directions.

Theorem 4 Concerning any non-trivial discrete unicycle path, Γ, for any infinite ray l originating from a
corner, x11, in which a straight line connects to either an arc or a straight line segment with different slope,
and for any d ∈ R there is a point c ∈ {Γ ∩ l} such that |c− x11| > d.

Proof To prove our claim we will examine a specific part of the invariant portion of the path: the infinite
concentric circle arcs centered at corner x11 in Figures 8 & 9. By Lemma 1 we know that the radii of the
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concentric circles arc will increase by
√
r2 + 1 where r is the radius of the previous circle arc. In this case,

r = 1 so the radii are
√

2,
√

3,
√

4,
√

5, etc.
We can then form triangles, as in Figure 10, connecting x11 and the ends of consecutive arcs. Some simple

geometry shows us that, because the bicycle is unit length and c11 is of length π/2, that the consecutive
concentric arcs overlap and any ray emerging from x11 that intersects the endpoint of an arc will necessarily
also intersect the following arc.

In addition, the length
√
n grows unbounded as n goes to infinity and the sum of the angles at x11,

arcsin(1/
√
n), also diverges as n goes to infinity.

Thus, for any infinite ray, l, originating at x11, and for any d ∈ R, there will be an intersection point, c,
of the bicycle path, Γ, with ray l such that |c− x11| > d. �

Figure 10: Invariant propagation of a corner on the x-axis

There are a number of corollaries that we can take from this theorem about the growth of a discrete
unicycle path.

Corollary 4.1 A non-trivial discrete unicycle path will cross any vertical line infinitely many times.

Corollary 4.2 The only unicycle path that draws a graph is the trivial path.

Now we know that a discrete unicycle path grows infinitely in any direction. However, it is important to
note that at any given moment the path is contained in a circle of known radius.

3.2 Growth of Length and Curvature in the Discrete Model

We will now use the known invariant pattern found in all discrete unicycle paths to examine the growth rate
of the length of the curve and the growth of the total absolute curvature through iterations. In order to do
so, we will classify and analyze the various kinds of corners that arise in the invariant path.
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The total absolute curvature of a smooth curve is defined as
∫
|κ| ds. This definition works for adding

up the total absolute curvature of the straight lines segments and circle arcs of a discrete path. However,
the discrete model also contains corners, so we must consider the curvature of these exterior angles. We will
define the total absolute curvature at each corner to be the angle that the bicycle frame sweeps through such
that the bicycle lies tangent to the next arc and/or line segment. Recall that the wheel turns the shortest
distance from one tangent to the next and thus every exterior angle will be less than π radians. For our
purposes, the angles do not have sign.

Definition Let θi be the angle measure of the ith corner in a discrete unicycle path. The total absolute
curvature of a discrete unicycle path is equal to∫

|κ| ds+

∞∑
i

|θi|

Focusing on the invariant portion of the path, we see that the first type of corner that connects two circle
arcs is an acute turn where both arcs have the same sign of curvature (positive or negative) and the turn is
in the opposite direction of the curvature. See Figure 11 .

Lemma 4 An acute corner that connects two circle arcs of the same orientation but turns in the opposite
direction of the curvature, produces two obtuse angles that connect arcs of opposite orientation in the next
iteration.

Proof We know from Lemma 1 that when the back wheel is tracing an oriented circle arc, the front wheel
traces a concentric circle arc in the same direction of curvature. We can easily picture where these two new
arcs lie. See Figure 11. In this case the bike must turn in the opposite direction of the curvature which
implies that the front wheel must, in a sense, go slightly backward to reach the tangent line of the next arc.
This implies that front wheel must turn π/2 + θ radians, then draw a unit arc in the direction opposite of
the curvature until it reaches the next tangent, and then turn again π/2 + φ to once again be going in the
original direction of curvature.

This process creates three new arcs. Two arcs of the same curvature connected in the middle by a unit
arc of opposite curvature. In addition, the corners will be turns of more than π/2 which makes them obtuse.

�

Figure 11: Acute corner produces two obtuse corners

Now we know that the next kind of corner that will present itself in the invariant path is an obtuse turn
where the arcs have opposite orientation and the turn is in the direction of the curvature of the second arc.
We will now examine this type of turn.
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Lemma 5 An obtuse corner that connects two circle arcs of opposite orientation, produces in the next
iteration: (1) an obtuse angle that connects two arcs of opposite curvature and (2) an acute angle that
connects two arcs of the same orientation and turns in the opposite direction of curvature.

Proof We know that when the back wheel is tracing an oriented curve and hits a corner where it must turn
onto an arc of the opposite curvature, that the bicycle will turn in the direction of the second curve. This is
because the bicycle always turns in the direction that creates the shortest arc.

The proof is similar to that of Lemma 4. When the back wheel reaches the corner, it must turn in the
direction opposite to its curvature which forces the front wheel to turn π/2 + θ radians to go backwards.
Then the front wheel draws a unit circle arc in the direction of the second arc. Now the front wheel will
need to turn slightly backwards, making a turn of π/2− φ to line up with the appropriate tangent line and
continue going in that direction of curvature. See Figure 12 .

This process creates three new arcs. Two arcs of opposite curvature connected by a turn of more than
π/2 making it obtuse, and then two arc of the same curvature connected by a turn of less than π/2 making
it acute. �

Figure 12: Obtuse corner produces an obtuse and an acute corner

As one can see, this second type of corner creates one corner of the second type and then another corner
of the first type. Now we know that these two types of corners will never create another type of corner and
will only produce each other as the iterations go to infinity.

We are ready to prove our next theorem about the growth of curvature of a discrete unicycle path.

Theorem 5 The total absolute curvature of a non-trivial discrete unicycle paths grows exponentially through
iterations.

Proof We will examine only the invariant path of every discrete unicycle path, which we will suppose,
without loss of generality, occurs in iteration 1. The discrete unicycle path is made up of straight lines, circle
arcs and corners where straight lines and circle arcs connect. Of these components, the ones that contribute
to total absolute curvature are arcs and corners.

When propagating from one iteration to the next, however, any circle arc has an image of a circle arc
with the same total curvature. This is because the two arcs have the same center and the same angle. This
means that the only elements that contribute to a change in total curvature from one iteration to the next
are new corners that are created. New corners are the result of corners in the pre-image that turn into an
arcs and must be connected to arcs on either side by corners.

We know from Lemma 4 that an acute angle (which we will abbreviate by A) turns into two consecutive
obtuse angles in the image. In addition, from Lemma 5 we know that an obtuse angle in the invariant
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path (which we will abbreviate by O) turns into an obtuse angle followed by an acute angle in the image.
Therefore, we can express this symbolically as O 7→ OA and A 7→ OO.

Let An be the number of acute angles in the invariant path in the nth iteration and likewise let On be
the number of obtuse angles in the invariant path in the nth iteration. Then it follows that for n ≥ 3,

An+1 = On and On+1 = 2An +On =⇒ 0 = On+1 −On − 2On−1

We know A3 = 1 and O3 = 0. We can easily solve this linear recurrence equation, and find the equation
for all the possible solutions is of the form:

On =
4

3
2n−3 +

2

3
(−1)n−3

for n ≥ 3.
This quantity grows exponentially which means that the number of obtuse angles in the invariant unicycle

path grows exponentially. Therefore, even if the acute corners were set to 0 and the obtuse corners were
set to π/2, the absolute sum of the corners would still grow exponentially through iterations. In addition,
because the invariant path is in every unicycle path independent of the seed curve, this means that for every
non-trivial discrete unicycle path the total absolute curvature grows exponentially. �

Another important fact about the complexity of discrete unicycle curves can be gathered from this
theorem.

Corollary 5.1 The total arc length of a non-trivial discrete unicycle paths grows exponentially in iterations.

Proof Theorem 5 proved that the number of obtuse corners in the invariant path grows exponentially. In
the following iteration, each of these obtuse corners becomes a unit circle arc of angle greater than π/2. It
follows that the sum of lengths of these arcs also grows exponentially through iterations, proving that the
total length of each iteration must also grow exponentailly for every non-trivial discrete unicycle path.

More specifically, let θi be the angle measure of an arbitrary corner in the nth iteration of the invariant
path and φi be the angle measure of an arbitrary circle arc in the same iteration with curvature equal to the
inverse its radius 1/ri. Then from our definition of the total absolute curvature of iteration n,

κn =
∑
|π − θi|+

∑
| 1
ri
φiri|. The first value in this sum becomes a circle arc in the next iteration and

the second value becomes a concentric circle arc of longer length.
From this and Lemma 1 we know that the total length of the n+ 1 iteration,

Ln+1 =
∑
|π − θi|+

∑
| 1
ri
φi

√
r2
i + 1| . Therefore,

Ln+1 > κn

and since κn grows exponentially, Ln+1 must grow exponentially as well.
�

An interesting corollary follows from the exponential grow of total length through iterations of the discrete
unicycle path.

Corollary 5.2 The expected number of times a line l intersects any non-trivial discrete unicycle path Γ
increases exponentially as a function of the number of iterations completed.

Proof As a result of Corollary 5.1, we know that the total length of a discrete unicycle curve Γ increases
exponentially through iterations. Knowing this, we can use the Crofton Formula to examine the expected
number of times a random line, l, intersects the path Γ [3].

Any directed line can be defined as a function of two parameters, it’s distance from the origin, p, and its
direction or angle away from the x-axis, ϕ. Figure 13 displays two examples: l1 = (ϕ1, p1) and l2 = (ϕ2, p2).
Let nΓ(l) be equal to the number of intersections that an arbitrary line l has with the curve Γ.
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The Crofton’s Formula states,

LΓ =
1

4

∫ ∫
nΓ(ϕ, p) dϕ dp.

We proved in Corollary 5.1, that the length of Γ grows exponentially through iterations. Therefore, the
Crofton Formula implies that nΓ(l) is an exponential function as well. �

Figure 13: Directed lines with perpendicular distance from the origin p and angle from the x-axis ϕ

This means that the intersections of our curve with any line in the plane will increase exponentially
through iterations. Recall, that in Theorem 4 we proved that for any ray emerging from the corner x11 and
any distance d ∈ R, there is a point in the bicycle path that intersects the ray further away from the corner
x11 than d. The Crofton Formula proves a stronger statement about the intersection of lines with the curve
because it shows that not only must the path intersect with any line but the number of intersection points
with a random line must also be exponential.

Theorem 5 and its corollaries are very important to the way we understand the growth of the discrete
unicycle curves. We know from Proposition 2 that at any moment, the unicycle path is contained in a circle
whose radius grows linearly. We also know that the total absolute curvature and the length of the curve
grow exponentially. This implies that the curve becomes very wrapped and twisted inside the disk as it grows.

Conjecture 1 We conjecture that any non-trivial discrete unicycle path is dense in R2.

We do have evidence to support the above conjecture by way of asking our computer program to draw
many iterations of the invariant portion of all non-trivial discrete unicycle paths. We would provide a picture,
but it would appear to readers like a black rectangle.

4 Smooth Model

In this section we will treat smooth unicycle paths, in which the seed curve and all resulting iterations
are in C∞.

Unlike the discrete model, in which a significant amount of the path is independent of the seed curve, as
discussed in Section 3.1, a smooth bicycle path is entirely dependent on the seed curve.

This model requires new investigation tactics. We cannot directly apply the methods used for and
Theorems proved about the discrete case to the smooth model. Approximating a smooth seed curve with a
discrete seed curve proves problematic due to the different behavior of the bicycle in the discrete model when
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Figure 14: Smooth unicycle path [2]

the rear wheel arrives at a corner. This behavior causes arbitrarily small error to blow up after sufficiently
many iterations. That is, we cannot stay arbitrarily close to the smooth curve we hope to approximate after
many iterations.

However, note that the proof of Proposition 2 does not require the seed curve to be discrete.
Recall Propositions 1 in which Tabachnikov and Levi explore the number of extrema and the number of

intersections with the x-axis of a smooth Γ, proving that these quantities grow at least linearly from iteration
to iteration. We will continue this trend of exploring the growth of complexity of the curve by analyzing the
points of inflection of the smooth unicycle path.

Proposition 6 Denote by P (γn) the number of points of inflection in the curve γn and assume that P (γn)
is finite. Then P (γn+1) > P (γn) for any non-trivial smooth unicycle path.

Proof We will distinguish vectors from scalars with bold font.
Suppose that γnγnγn is parameterized by arc length. The curvature of γn+1γn+1γn+1 = γnγnγn + γ′nγ

′
nγ
′
n is given by,

κn+1 =
γ′n+1γ′n+1γ′n+1 × γ′′n+1γ′′n+1γ′′n+1

|γ′n+1γ′n+1γ′n+1|3
=

(γ′nγ
′
nγ
′
n + γ′′nγ

′′
nγ
′′
n)× (γ′′nγ

′′
nγ
′′
n + γ′′′nγ

′′′
nγ
′′′
n )

|γ′nγ′nγ′n + γ′′nγ
′′
nγ
′′
n|3

.

But, using Frenet-Serret formulas, γ′′nγ
′′
nγ
′′
n = κnN = κnJγ′nγ

′
nγ
′
n where κn is the curvature of γnγnγn as a function of time,

N is normal to γnγnγn, and J is a rotation by π/2 in the plane. Thus,

γ′′′nγ
′′′
nγ
′′′
n = (κnJγ′nγ

′
nγ
′
n)′

= κ′nJγ′nγ
′
nγ
′
n + κnJγ′′nγ

′′
nγ
′′
n

= κ′nN + κ2
nJN

= κ′nN− κ2
nγ
′
nγ
′
nγ
′
n.
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Additionally,

|γ′n+1γ′n+1γ′n+1| =
√

(γ′nγ
′
nγ
′
n + γ′′nγ

′′
nγ
′′
n) · (γ′nγ

′
nγ
′
n + γ′′nγ

′′
nγ
′′
n)

=
√

1 + κ2
n.

Then we may calculate,

κn+1 =
(γ′nγ
′
nγ
′
n + γ′′nγ

′′
nγ
′′
n)× (γ′′nγ

′′
nγ
′′
n + γ′′′nγ

′′′
nγ
′′′
n )

|γ′nγ′nγ′n + γ′′nγ
′′
nγ
′′
n|3

=
(γ′nγ
′
nγ
′
n + κnN)× (κnN + κ′nN− κ2

nγ
′
nγ
′
nγ
′
n)

(
√

1 + κ2
n)3/2

=
κi + κ′n + κ3

n

(1 + κ2
n)3/2

.

The denominator of this equation is always positive, so to find the zeros of κn+1, we simply consider the
numerator.

Let F be an antiderivative of 1 + κ2
n. Than one has,

κn + κ′n + κ3
n = e−F (eFκn)′

= F ′κn + κ′n.

Consider two consecutive zeros of κn occurring at n ≤ t1 ≤ n + 1 and n ≤ t2 ≤ n + 1. Any zero of κn
will be a zero of eFκn. Rolle’s Theorem states that there is a zero of (eFκn)′ in (t1, t2), and hence a zero of
κn+1, occurring in (t1, t2).

Additionally, our construction requires that κ
(m)
0 = 0 at t = n and t = n+ 1 for all derivatives, and thus,

that κn+1 = 0, at (n, 0) and (n+ 1, 0).
Together, if κn has m zeros in (t1, t2), then κn+1 must have at least m−1 zeros in (t1, t2) along with a zero

on [n, t1) and a zero on (t2, n+ 1], that is, at least m+ 1 zeros altogether. Thus, we have P (γn+1) > P (γn)
for any non-trivial smooth bicycle path.

5 Smooth Closed Convex Shapes

In this section we will alter the construction of our path slightly. Instead of seed curves, we will use seed
ovals.

Definition A seed oval, α0, is convex, closed curve from which the rest of the path is constructed.

When the bicycle begins its motion, the front wheel moves so that the back wheel traces along this
seed oval in a fixed direction, i.e. clockwise or counterclockwise around a central point. However, in this
construction, the bicycle would be stuck in an infinite loop if we did not stop it or add a rule. Thus, we add
a rule: when front wheel of the bicycle has completely constructed the resulting path, α1, we pick up the
bicycle and place the rear wheel on the α1 such that the bicycle frame is tangent to the path pointing in the
same direction as it had been traveling on α0, i.e. clockwise or counterclockwise around the original central
point. This process repeats to create infinite closed curves. In this way we can create infinite iterations as
in previous sections, but here our bicycle path is necessarily discontinuous.

As in the previous construction, we can have a discrete model treating only circle arcs and line segments,
but here we will only observe the smooth case in which α0 ∈ C∞.

If α0 is a circle of radius r, then αn is a concentric circle of radius
√
r2 + n for all n ∈ N as described in

Lemma 1 (a). Thus, in this construction, α0 results in infinite complete concentric circles. A perfect circle
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seed oval in this construction is analogous to a straight line segment seed curve in the previous construction.

Conjecture 1 If α0 is not a circle then ∃n ∈ N such that αn is not convex.

Figure 15, in which 24 iterations of an ellipse α0 with semiaxes 1 and 1.01 evidences this conjecture.

Figure 15: 24 iterations of an ellipse α0 with semiaxes 1 and 1.01

Small perturbations from a circle become exaggerated through iterations. One can attempt to normalize
this effect by alternating the direction in which the bicycle traverses between iterations, i.e. if the bicycle
travels counterclockwise on αn about a center point, then have the bicycle travels clockwise on αn+1 about
the central point. But tweaking the construction in this way does not seem to prevent the bicycle path from
becoming non-convex through iterations. What’s more is tweaking the construction in this way does not
even seem to slow down the appearance of points of non-convex iterations, though it does cause the path to
spiral slower.

Figure 16, on the left, displays 11 iterations of an ellipse α0 with semiaxes 1 and 1.1 with the regular
construction, i.e. with the bicycle always traveling counterclockwise on the path. On the right, Figure
16 displays 9 iterations the same α0 with the attempted normalizing construction, i.e. with the bicycle
alternating its direction of travel between iterations. In both constructions it appears to take approximately
8 iterations for the bicycle path to become non-convex.
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Figure 16: Ellipse α0 with semiaxes 1 and 1.1
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