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1 Billiards and related systems

1.1 Polygonal outer billiards in the hyperbolic plane

The outer billiard about a convex polygon P in the plane R2 is a piece-wise
isometry, T , of the exterior of P defined as follows: given a point x outside
of P , find the support line to P through x having P on the left, and define
T (x) to be the reflection of x in the support vertex. See [22, 9].

Figure 1: The outer billiard map in the plane

C. Culter proved (Penn State REU 2004) that every polygon in the plane
admits periodic outer billiard orbits, see [24]. Outer billiard can be defined on
the sphere and in the hyperbolic plane. On the sphere, there exist polygons
without periodic outer billiard orbits. Conjecture: every polygonal outer
billiard in the hyperbolic plane has periodic orbits. These orbits may lie on
the circle at infinity.

Figure 2: Outer billiards on equilateral triangles in the hyperbolic plane

Figure 2 illustrates the complexity of this system, even in the case of an
equilateral triangle: the white discs are periodic domains of the outer billiard
map.

Another interesting problem is to describe polygonal outer billiard tables
in the hyperbolic plane for which all orbits are periodic. For example, right-
angled regular n-gons (with n ≥ 5) have this property, see [8]. In the affine
plane, every outer billiard orbit about a lattice polygon is periodic.
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1.2 Polyhedral outer billiards in 4-dimensional space

Let M be a closed convex hypersurface in C2. For a point x ∈ M , let n(x)
be the outer unit normal vector. The outer billiard map T of the exterior
of M is defined as follows. For t > 0, consider points y = x + itn(x) and
z = x − itn(x) (of course, i =

√
−1); then T (y) = z. One can prove that

for every y outside of M there exists a unique x ∈ M and t > 0 such that
y = x+ itn(x), hence the map T is well defined. See [22, 9] for more details.

Problem: study the dynamics of the outer billiard map when M is the
surface of a regular polyhedron in C2.

In dimension four, there are six regular polyhedra. Even for a regular
simplex, one expects an interesting dynamical system.

In the plane, a regular pentagon (and other regular n-gons with n 6=
3, 4, 6) yields a beautiful fractal set, the closure of an infinite orbit of the
outer billiard map. See Figure 3.

Figure 3: Outer billiards on regular n-gons: n = 5, 8, 12

1.3 Outer billiards with contraction

Fix a positive constant λ < 1 and consider a modified outer billiard where the
reflection in support point is composed with the dilation with coefficient λ
centered at this point. This transformation contracts the area with coefficient
λ2. The problem is to study the dynamics of this class of outer billiards. Here
is sampler of problems.

Let the outer billiard table be a convex polygon. Prove that, for every λ,
every orbit converges to a periodic orbit. What happens in the limit λ→ 1?

Let the outer billiard table be an oval. Describe the limit set of the orbits.
Is it true that for every oval, except an ellipse, and for every λ (or for λ close
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enough to 1), there exist periodic orbits?
An interesting class of curves to study as outer billiard tables are piece-

wise circular curves. For such curves, the outer billiard map is continuous
(although not everywhere differentiable). Outer billiards about piece-wise
circular curves are relatively easy to study numerically.

1.4 Billiards in near squares

In the study of mathematical billiards, we fix a region enclosed by a curve in
the plane. We consider a pointmass moving around a frictionless table and
making elastic collisions with the boundary, so that the speed of the point-
mass never changes. The pointmass bounces off the boundary so that the
angle of incidence made with the tangent line equals the angle of reflection.

Figure 4: A periodic billiard path in a polygon, and an ε-near square.

It is natural to consider mathematical billiards in a polygonal region. See
chapter 7 of [22] for an introduction to the topic. An open question is “does
every polygonal billiard table admit a periodic billiard path?” Because this
is a very difficult question, it is natural to try consider special cases of the
question. Various special cases involving triangles have been considered. See
[19] for a survey of some results for triangles.

It seems that billiards in quadrilaterals which are nearly squares would
be an interesting special case. For ε > 0, a quadrilateral is an ε-near square
if the four angles made with a diagonal are within ε of π

4
. Is there an ε > 0

so that every ε-near square has a periodic billiard path? It is reasonable to
expect that the answer to this question is interesting, and might be similar
to the answer for the 30-60-90 triangle found in [18].
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1.5 Spherical and hyperbolic versions of Gutkin’s the-
orem

E. Gutkin asked the following question: given a plane oval γ, assume that
two points, x and y, can “chase” each other around γ in such a way that the
angle made by the chord xy with γ at both end points has a constant value,
say, α. If γ is not a circle, what are possible values of α?

The answer is as follows: a necessary and sufficient condition is that there
exists n ≥ 2 such that n tanα = tan(nα). See [21] for a brief proof.

In terms of billiards, the billiard ball map in γ has an invariant circle given
by the condition that the angle made by the trajectories with the boundary
of the table is equal to α. The result can be also interpreted in terms of
capillary floating with zero gravity in neutral equilibrium, see [11, 12].

Problem: find analogs of this result in the spherical and hyperbolic ge-
ometries. What about curves in higher dimensional spaces?

1.6 A non-conventional billiard

Consider the following non-conventional “billiard”. Let γ be an oval (the
boundary of the billiard table). Let AB be the incoming trajectory, where
A,B ∈ γ. The outgoing (reflected) trajectory is defined to be BC, C ∈ γ
where AC is parallel to the tangent line to γ at point B. See Figure 5.

Figure 5: Non-conventional billiard

For example, periodic trajectories in this billiard correspond to inscribed
polygons with extremal area (for comparison, periodic trajectories in the
usual billiard correspond to inscribed polygons with extremal perimeter, and
the ones in the outer billiards to circumscribed polygons with extremal area).

The general problem is to study these non-conventional billiards. In par-
ticular, what can be said if the billiard table is a polygon? The case of
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triangle is trivial, but quadrilaterals are already interesting.

2 Geometry

2.1 Origami hyperbolic paraboloid

There is a common origami construction depicted in Figure 6. The pleated
surface looks like a hyperbolic paraboloid and is often called so in the origami
literature.

Figure 6: Hyperbolic paraboloid

The problem is to explain this construction. If one assumes that paper is
not stretchable and the fold lines are straight then one can prove that this
construction is mathematically impossible, see [7]. The explanation is that
there exist invisible folds along the diagonals of the elementary trapezoids
in Figure 6 left. Assuming this to hold, and given a particular patterns of
these diagonals (one can choose one of the two for each trapezoid), what is
the shape of the piece-wise linear surface obtained by folding?

A more general question: what is the result of a similar construction for
other patterns of folding lines? See, e.g., Figure 7. See [13] concerning folding
paper along curved lines.

2.2 The unicycle problem

A mathematical model of a bicycle is an oriented unit segment AB in the
plane that can move in such a way that the trajectory of the rear end A is
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Figure 7: A different pleated surface

always tangent to the segment. Sometimes the trajectories of points A and
B coincide (say, riding along a straight line).

The following construction is due to D. Finn [10]. Let γ(t), t ∈ [0, L] be
an arc length parameterized smooth curve in the plane which coincides with
all derivatives, for t = 0 and t = L, with the x-axis at points (0, 0) and (1, 0),
respectively. One uses γ as a “seed” trajectory of the rear wheel of a bicycle.
Then the new curve Γ = T (γ) = γ + γ′ is also tangent to the horizontal axis
with all derivatives at its end points (1, 0) and (2, 0). One can iterate this
procedure yielding a smooth infinite forward bicycle trajectory T such that
the tracks of the rear and the front wheels coincide. See Figure 8.
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Figure 8: A unicycle track

It is proved in [17] that the number of intersections of each next arc of
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T with the x-axis is greater than that of the previous one. Likewise, the
number of local maxima and minima of the height function y increases with
each step of the construction.

Conjecture: Unless γ is a straight segment, the amplitude of the curve
T is unbounded, i.e., T is not contained in any horizontal strip, and T is
not embedded, that is, it starts to intersect itself.

It is interesting to consider a piece-wise circular version of the same prob-
lem; it might be easier to tackle. See Figure 9.

Figure 9: A piece-wise circular unicycle track

2.3 Geometry of bicycle curves and bicycle polygons

A closed curve γ in a Riemannian manifold M is called bicycle if two points
x and y can traverse γ in such a way that the arc length xy remains constant
and so does the distance between x and y in M . For example, a circle in
Euclidean plane is a bicycle curve.

An explanation of the terminology is as follows. Let γ be a bicycle curve
in the plane and let γ′ be the envelope of the segments xy. If γ and γ′ are the
front and rear bicycle wheel tracks, then one cannot determine the direction
in which the bicycle went from these curves. See [23] for a detailed discussion
and references. Surprisingly, a bicycle curve can be also characterized as the
section of a homogeneous cylinder (a log) that float in equilibrium in all
positions.

Call the ratio of the arc length xy to the total arc length of γ the rotation
number and denote it by ρ. In the plane, one can prove that, for some values
of ρ (for example, ρ = 1/3 and 1/4), the only bicycle curve is a circle, whereas
for some other values (for example, ρ = 1/2), there exist non-circular bicycle
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curves; see [4, 23, 26, 27, 28]. A complete description of plane bicycle curves
is not known. See Figure 10 for some examples (due to F. Wegner).

Problem: construct non-trivial examples of bicycle curves on the sphere,
the hyperbolic plane, multi-dimensional Euclidean space, etc.

Two dimensional bodies which can float in all directions are given by ψper =
2π/n, thus for m = 1 and sufficiently small ε. In this limit the δu can be
determined from eq. (141) with

ζ(ω′ + δz) =
n2

12
(ω′ + δz) − ni − n

2
tan(

nδz

2
) + O(q), (199)

σ(ω′ + δz) =
2i

nq̂
e−inδz cos(

nδz

2
)en2(ω′+δz)2/24 + O(q̂), (200)

where eqs. (349) and (355) and π
ω3

= n, η3

ω3
= n2

12 have been used. Then eq.
(141) yields

tan(n δu ) = n tan( δu ), (201)

in agreement with the results obtained in refs. [7, 12, 8], where δu corresponds
to π

2 − δ0 and in ref. [6], where δu corresponds to πρ.
A few cross-sections of the bodies are shown in figs. 10 to 23. For odd n the

innermost envelope corresponds to density ρ = 1/2.

Fig. 10 m/n = 1/3,
ε = 0.1

Fig. 11 m/n = 1/3,
ε = 0.2

Fig. 12 m/n = 1/3,
ε = 0.5

Fig. 13 m/n = 1/4,
ε = 0.1

Fig.∗ 14
m/n = 1/4, ε = 0.1

Fig. 15 m/n = 1/4,
ε = 0.2
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Fig. 16 m/n = 1/5,
ε = 0.1

Fig.∗ 17
m/n = 1/5, ε = 0.1

Fig.∗ 18
m/n = 1/5, ε = 0.1

Fig.∗ 19
m/n = 1/5, ε = 0.2

Fig. 20 m/n = 1/6,
ε = 0.05

Fig.∗ 21
m/n = 1/6, ε = 0.05

Fig.∗ 22
m/n = 1/6, ε = 0.05

Fig. 23 m/n = 1/7,
ε = 0.1

7.2 Periodicity

In eq. (115) an angle of periodicity ψc has been defined. Here the periodicity is
discussed for several regions in fig. 4. The angle of periodicity ψper is defined
as the change of the angle ψ, as one moves from a point of extremal radius ri

along the curve until a point of this extremal radius is reached again. Its sign
is defined by the requirement that watching from the origin one starts moving
counterclockwise. This yields

ψper =
∆ψ

sign (dψ
du )

∣∣∣
r=ri

, (202)

∆ψ = ψ(u + 2ω3) − ψ(u) (203)

32

Figure 10: Non-trivial bicycle curves

A discrete analog of a bicycle curve is a bicycle (n, k)-gon, an equilateral
n-gon whose k-diagonals are all equal to each other. For some values of (n, k)
such a polygon is necessarily regular and for other values (say, n = 8, k = 3)
non-trivial examples exist. A complete description is not known either; see
[5, 6, 23] for partial results.

3 Algebraic geometry

3.1 Cayley-style theorem for null geodesics on an el-
lipsoid in Minkowski space

The following Poncelet-style theorem was proved in [14]. Consider an ellip-
soid

x2

a
+
y2

b
+
z2

c
= 1, a, b, c > 0

in three dimensional Minkowski space with the metric dx2 + dy2 − dz2. The
induced metric on the ellipsoid degenerates along the two “tropics”

z = ±c
√
x2

a2
+
y2

b2
;

the metric is Lorentz, of signature (+,−), in the “equatorial belt” bounded
by the tropics. Through every point of the equatorial belt there pass two
null geodesics of the Lorentz metric, the “right” and the “left” ones.
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Call a chain of alternating left and right null geodesics, going from tropic
to tropic, an (n, r)-chain if it closes up after n steps and making r turns
around the equator. The theorem states that if there exists an (n, r)-chain
of null geodesics then every chain of null geodesics is an (n, r)-chain. See [14]
for a discussion.

Problem: find conditions on the numbers a, b, c ensuring the existence
of (n, r)-chains. For the classical Poncelet porism, such a formula is due to
Cayley, see [15]. For the Poncelet porism, see [3] and [1].

3.2 A converse Desargues theorem

A classical Desargues theorem states the following. Consider a pencil of
conics (a one-parameter family of conics sharing four points – these points
may be complex or multiple, as for the family of concentric circles). The
intersections of a line ` with these conics define an involution on `, and the
theorem states that this involution is a projective transformation of `. See
[2].

Let f(x, y) be a (non-homogeneous) polynomial with a non-singular value
0. Let γ be an oval which is a component of the algebraic curve f(x, y) =
0. Assume that the curves γε = {f(x, y) = ε, ε > 0} foliate an outer
neighborhood of γ and that for every tangent line ` to γ, its intersections
with the curves γε define a (local) projective involution on `. Problem:
prove that γ is an ellipse and the curves γε form a pencil of conics.

A particular case, in which the involutions under consideration are central
symmetries of the line, is proved in [25].

3.3 New configuration theorems of projective geome-
try

A number of new configuration theorem of elementary projective geometry
were discovered in [20], see, e.g., Figure 11. These theorems somewhat re-
semble the classical theorems of Pappus and Pascal. However only in some
cases geometric proofs are known; the rest is a “brute force” computer com-
putation (and in one case, the computation is too large for computer). The
problem is to understand what is going on, to find conceptional proofs and
possible generalizations to these theorems. (In particular, the last theorem
in [20] is not really a theorem, since one only has a numerical “proof” for it).
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Figure 11: A configuration theorem: the inner-most octagon is projectively
dual to the outer-most one
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