A CUTE LITTLE RHOMBUS

BILLIARDS IN TRIANGLES AND IN KITES

- Given any triangle, we can reflect it into a kite.
- We may label the three edges of the triangle 0,1,2 respectively. Then we reflect it along 0. We shall label the image of edge 1 and 2 as 3 and 4 respectively. Then we have a kite with edges labeled 1,2,3 and 4.

BILLIARDS IN TRIANGLES AND IN KITES

- For any periodic billiard path in a triangle, we can always complete it into a periodic billiard path for the corresponding kite.
- For any periodic billiard path in a kite, in the unfolding, we can split
 each kite into two corresponding triangles, then the result is a periodic
 billiard path for the triangle.

BILLIARDS IN TRIANGLES AND IN KITES

- How to change from a triangle billiard path to a kite billiard path:
 - First of all, all 0-edges will disappear in the orbit type.
 - Whenever you hit a 0-edge, from there on 1edges and 2-edges will change to 3-edges and 4edges respectively, or 3-edges and 4-edges will change to 1-edges and 1-edges respectively

BILLIARDS IN TRIANGLES AND IN KITES

 Say triangle orbit type 012012. Changing to kite orbit type, it becomes 3412.

BILLIARDS IN TRIANGLES AND IN KITES

- All stable kite orbits corresponds to stable triangle orbits. The converse is NOT true.
- So we can use McBilliards to search stable orbits for triangles, and then use the above algorithm to check stability of the corresponding orbit for the corresponding kite.
- Rhombi are special kind of kites corresponding to isosceles triangles.

HEXAPATH FOR TRIANGLES

- Pick any three nice enough vectors in R². Label them 0,1,2.
- For any orbit type for triangles, say "012012", we can move according to the following laws:
 - We start from a point, and move according to digit in the orbit type one by one.
 - When we see 0,1,2 in the odd position, then we move by the corresponding vectors.
 - When we see 0,1,2 in the even position, then we move by the negation of the corresponding vectors.

HEXAPATH FOR TRIANGLES

• The hexapath for orbit 0120201202:

HEXAPATH FOR TRIANGLES

- Nice things about hexapaths:
 - An orbit type is stable iff the hexapath is a closed loop.
 - The path always stays on a hexagon grid.
 - Easier to see patterns.

SQUARE PATH FOR TRIANGLES

- Consider the hexagon grid:
 - On each grid point there is a unique edge with label 0.
 - Connect the center of these edges gives us a square grid
 - on the square grid we can find the square path.

SQUARE PATH FOR TRIANGLES

SQUARE PATH FOR QUADRILATERALS

• We start by a square grid. Then we break the square grid down into "staircases". On each staircase we label 1, 2 alternatively or 3, 4 alternatively.

			2	4	2	4	2	4
		1 2	3 4	2 2	3 4	2	3 4	
	2	3 4	2	3 4	2	3 4		
	1 3 2 4	1 2	3 4	2	3 4			
2	3 1 4 2	3 4	1 2	3 4				
1 3	1 3	1	3	1				1

SQUARE PATH FOR QUADRILATERALS

- Clearly for each grid point, there is a unique edge with each of the four label.
- Given an orbit type, say 42312413, we start from an arbitrary point and draw the square path.

-

SQUARE PATH FOR KITES

- Given an orbit type for kites, we can draw their quadrilateral square path.
- We can also consider it as the orbit for the corresponding triangle. Then we can draw the triangle square path.
- The two square path always coincide.

- All isosceles triangles have stable periodic billiard path, except for $\pi/(2^n)$ -isosceles triangles.(Sch & Hoo 2009)
- A *****-rhombus refers to a rhombus whose acute angle is *****.
- Conjecture: All rhombi have stable periodic billiard path, except for $\pi/(2^n)$ -rhombi.
- Sadly, almost all orbits used in Sch & Hoo's paper are no longer stable for the rhombi.

- Theorem: All π /n-rhombi have stable periodic billiard path, except for π /(2ⁿ)-rhombi.
- We shall show that if n has a odd factor, then π /n-rhombi have stable periodic billiard path.

- Proposition: If n is the sum of consecutive positive integers, i.e. n=a+(a-1)+(a-2)+...+(a-k), and n and a have different parity, then π / n-rhombi have stable periodic billiard path. (e.g. 5=2+3 is bad)
- Square path of the orbit for $\pi/6$ -rhombi: (6=1+2+3)

- Proof of the proposition:
 - Analyzing the two gray lines + calculation.

- Proposition: If n has a factor congruent to 3 mod 4, then it satisfies the condition in the previous proposition.
- Proof:

$$= 4+3+2+1+0+(-1)+(-2)$$

•
$$14=5+4+3+2$$
 = $5+4+3+2+1+0+(-1)$

$$21 = 6 + 5 + 4 + 3 + 2 + 1$$
 $= 6 + 5 + 4 + 3 + 2 + 1 + 0$

$$28 = 7 + 6 + 5 + 4 + 3 + 2 + 1 = 7 + 6 + 5 + 4 + 3 + 2 + 1$$

- Some fact about numbers again:
 - If n is congruent to 1 mod 4:
 - 5=2+2+1+0, 9=3+3+2+1, 13=4+4+3+2,
 - If n has a factor congruent to 1 mod 4:
 - 13=4+4+3+2+2+2+1+0+0+(-1)+(-2)+(-2)
 - 26=5+5+4+3+3+3+2+1+1+1+0+(-1)+(-1)

- Square path for corresponding orbit:
 - n has a factor congruent to 5 mod 8

• Observation: For all odd n>3, all $2\pi/n$ -rhombi have a double infinite family $A_{m,n}$ of stable periodic billiard paths.

$$n=4k+1$$
 $n=4k+3$

- Sadly, the case for $4\pi/n$ is much more complicated. (Especially $4\pi/(8k+5)$)
- But we do have some nice butterflies, each is a double family of stable orbits.

• And each butterfly have some "butterfly droppings"

- The square path pattern for the butterflies and droppings are super nice and easy to study. The square path are all simple closed loops with no selfintersection.
- The butterflies don't exist between $\pi/2$ and $\pi/4$, but are abundance between $2\pi/(4k+3)$ and $\pi/(2k+2)$, and between $\pi/(2k)$ and $3\pi/(6k+2)$
- However, the gaps between them are hard to fill up.

A CUTE LITTLE RHOMBUS

• Thank you!