Bicycle "Unicycle" Path

Finn, David. "Can a Bicycle Create a Unicycle Path"

Definition of a Seed Curve

• The *seed curve* of a unicycle path is the curve from which the rest of the path is constructed. It is a piecewise smooth, vector-valued curve that with endpoints (0,0) and (1,0) with infinite zero derivative at each of these end points. It may self intersect and is not necessarily a graph.

Various Discrete Seed Curves (ac) and a Smooth Seed Curve (d)

Propagation of a Straight Line Path

Concentric Circle Arc Bicycle Path

Result of a Continuous First Derivative

Linear Growth about the Origin in Radial Direction

Growth About Arbitrary Discrete Seed Curve

Invariant Portion of Discrete Bicycle Paths

Result of Acute Corner

Result of Obtuse Corner

- An O in iteration *i* will result in OA in iteration i+1
- An A in iteration *i* will result in OO in iteration i+1
- Let A_n be the number of As in iteration *n* and let O_n be the number of Os in iteration *n*

 $A \rightarrow OO \rightarrow OAOA \rightarrow OAOOOAOO$

$$\begin{array}{rclcrcrc} A_{n+1} &=& O_n & & 0 &=& q^{n+1} - q^n - 2q^{n-1} \\ O_{n+1} &=& 2A_n + O_n & & =& q^{n-1}(q^2 - q - 2) \\ &=& 2O_{n-1} + O_n & & =& q^2 - q - 2 \\ \implies 0 &=& O_{n+1} - O_n - 2O_{n-1} \end{array}$$

$$\frac{4}{3}2^n + \frac{2}{3}(-1)^n$$

Levi, Mark and Sergei Tabachnikov. On Bicycle Tire Track Geometry, Hatchet Planimeter, Menzin's Conjecture and Oscillation of Unicycle Tracks, arXiv:0801.4396, VOL. 1, 28 January 2008

Proposition 6 (Levi, Tabachnikov) Denote by $Z(\gamma_i)$ the number of intersection points of the curve γ_i with the x-axis (excluding the end points of the iteration); assume that $Z(\gamma_i)$ is finite. One has $Z(\gamma_i + 1) > Z(\gamma_i)$ for any non-trivial smooth bicycle path [2].

Proposition 7 (Levi, Tabachnikov) Denote by $E(\gamma_i)$ the number of local extrema of the curve γ_i ; assume that $E(\gamma_i)$ is finite. One has $E(\gamma_i + 1) > E(\gamma_i)$ for any non-trivial smooth bicycle path [2].

We prove a similar proposition:

Proposition 8 Denote by $P(\gamma_i)$ the number of points of inflection in the curve γ_i ; assume that $P(\gamma_i)$ is finite. One has $P(\gamma_{i+1}) > P(\gamma_i)$ for any non-trivial smooth bicycle path.

Solve for the Curvature of the i+1st iteration in terms of the curvature of the ith iteration:

$$\boldsymbol{\gamma_{i+1}} = \boldsymbol{\gamma_i} + \boldsymbol{\gamma_i'} \qquad \quad \boldsymbol{\kappa_{i+1}} = \frac{\boldsymbol{\gamma_{i+1}'} \times \boldsymbol{\gamma_{i+1}''}}{|\boldsymbol{\gamma_{i+1}'}|^3} = \frac{(\boldsymbol{\gamma_i'} + \boldsymbol{\gamma_i''}) \times (\boldsymbol{\gamma_i''} + \boldsymbol{\gamma_i''})}{|\boldsymbol{\gamma_i'} + \boldsymbol{\gamma_i''}|^3}$$

Solving for each term:

 $= \sqrt{1+\kappa_i^2}.$

$$\begin{split} \boldsymbol{\gamma_i''} &= \kappa_i \mathbf{N} = \kappa \mathbf{B} \boldsymbol{\gamma_i'} &= (\kappa_i \mathbf{B} \boldsymbol{\gamma_i'})' \\ &= \kappa_i' \mathbf{B} \boldsymbol{\gamma_i'} + \kappa_i \mathbf{B} \boldsymbol{\gamma_i''} \\ &= \kappa_i' \mathbf{N} + \kappa_i^2 \mathbf{B} \mathbf{N} \\ &= \kappa_i' \mathbf{N} - \kappa_i^2 \boldsymbol{\gamma_i'}. \end{split}$$
$$\begin{aligned} &|\boldsymbol{\gamma_{i+1}'}| &= \sqrt{(\boldsymbol{\gamma_i'} + \boldsymbol{\gamma_i''}) \cdot (\boldsymbol{\gamma_i'} + \boldsymbol{\gamma_i''})} \end{aligned}$$

Some Math...

$$\begin{split} \kappa_{i+1} &= \frac{(\boldsymbol{\gamma'_i} + \boldsymbol{\gamma''_i}) \times (\boldsymbol{\gamma''_i} + \boldsymbol{\gamma'''_i})}{|\boldsymbol{\gamma'_i} + \boldsymbol{\gamma''_i}|^3} \\ &= \frac{(\boldsymbol{\gamma'_i} + \kappa_i \mathbf{N}) \times (\kappa_i \mathbf{N} + \kappa'_i \mathbf{N} - \kappa_i^2 \boldsymbol{\gamma'_i})}{(\sqrt{1 + \kappa_i^2})^{3/2}} \\ &= \frac{\kappa_i + \kappa'_i + \kappa_i^3}{(1 + \kappa_i^2)^{3/2}}. \end{split}$$

Let F be an antiderivative of $1 + \kappa_i^2$. Than one has,

$$\kappa_i + \kappa'_i + \kappa_i^3 = e^{-F} (e^F \kappa_i)' = F' \kappa_i + \kappa'_i.$$

Definition A seed oval, α_0 , is convex, vector-valued, closed curve from which the rest of the path is constructed.

Conjecture 1 If α_0 is not a circle then $\exists i \in \mathbb{N}$ such that α_i is not convex.

