
A Computer Model of Paper Models of Negative Curvature

Matthew Cole and Benjamin DeMeo
Mentors: Chaim Goodman-Strauss and Diana Davis

August 9, 2013

1 Motivation

It is easy to make negatively curved polygons in space with paper, scissors, and tape. A few length cal-
culations with the hyperbolic law of cosines allow one to add struts across the middle of such polygons,
producing a fairly rigid surface. Furthermore, several polygons may be taped together, and it appears that
such taping could continue indefinitely.

On the other hand, Hilbert’s Embedding Theorem says the following:

Theorem 1. A complete geometric surface of constant negative curvature cannot be immersed in R3.

“Geometric surfaces” must be C2; but it looks like our paper models are smooth. “Constant” curvature
means that every point looks locally the same; but it looks like the center point of our models could fit over
any other point. “Complete” surfaces have no sharp edges; but it looks like our models could be extended
indefinitely. They would eventually intersect themselves, but that’s not the problem- “immersions” allow
self-intersections. Something else is not what it appears here.

These simple paper models look like they contradict Hilbert’s Theorem. Since a paper model obviously
will not overturn an established result, we set out to investigate exactly how these models fall short of the
conditions of the theorem.

2 Overview

To accomplish our goals, we must implement the following:

• A flexible “strip of paper” must be represented digitally in a sensible way.

• If a strip starts in a curved position and is released, it must “relax” naturally into a flat state.

• If we hold the ends of a strip fixed, it must move to a state with the lowest possible elastic potential
for the given constraints.

• Multiple strips must be able to interact with each other and relax as a unit.

2.1 Digital representation of strips

We would like to represent a strip in such a way as to allow every possible configuration of the strip, but
the scope and variety of these configurations makes this a daunting task. Some approximation of a smooth
strip must suffice - the finer the approximation, the larger the range of possible configurations. We used
a discrete model: our strips are piecewise flat with a finite number of folds, which are evenly spaced along
the length of the strip. Each fold is characterized by two variables (see figure 1): its lateral angle on the
surface of the paper θ, and its exterior dihedral angle φ (we use the exterior rather than interior for ease of

1



Figure 1: One fold with its parameters θ (lateral) and φ (exterior dihedral)

Θ
Φ

computation). θ can take values in (−π2 ,
π
2 ), and φ ranges over (−π, π). We refer throughout to the portion

of a strip between folds as a ‘segment.’
Our strips are oriented: they have a start and an end. At any point, there is a direction the strip is

traveling (the tangent), a direction perpendicular to the surface of the strip (the normal), and a direction
toward the side of the strip (the binormal). These three directions form an orthonormal basis for R3.
We chose the matrix of column vectors (B, T,N) as our standard form. All orientation matrices have the
binormal in the first column, the tangent in the second column, and the normal in the third column.

2.2 Minimizing strip energy (without constraints)

The mathematical theory of curvature helps us address the second problem. Given a point p on a two-
dimensional surface S embedded in R3, let κ1 and κ2 be the maximum and minimum curvatures of any cross
section of S taken normal to the surface at p. The quantity H = κ1+κ2

2 is called the mean curvature of S
at p. The bending energy of a surface is well characterized by Q =

∫
S
H2 in the sense that minimizing this

quantity yields a surface with minimal energy. To simulate the bending energy of a strip, we attributed a
“cost” to each fold indicating its approximate contribution to the bending potential; this is discussed further
in the description of CostCircles. Let Q∗ denote our approximation of Q.

We now need to make a strip“relax.” In other words, we must minimize the function Q∗ : R2k → R.
Recall that the gradient OQ∗ is a vector in R2k giving the direction of greatest increase in Q. Hence, −OQ
gives the direction of greatest decrease. To find the minimum, we scale −OQ down appropriately and add the
result to the vector in R2k specifying our initial configuration. In the future, we will refer to this operation
as stepping down the cost gradient. Continued stepping leads us to a minimum. This method as a whole is
known as gradient descent.

2.3 Minimizing strip energy (with constraints)

The third problem calls for constrained optimization. Holding the endpoints of a strip fixed imposes a
constraint on the range of acceptable configurations. Since the total range of configurations is represented
by R2k, the set of configurations satisfying a some constraint is a subset of R2k called the constraint space.
Phrased mathematically, then, the problem is to find the point within the constraint space having the lowest
energy. Again, this is accomplished by gradient descent, but we must take care not to leave the constraint
space. Section 4 discusses various methods in detail.

2.4 Strip interactions

Finally, we accomodate many strips interacting at once. Since each strip has its own attributes, one would
like to represent them as individual objects storing their own information. While Mathematica is not object
oriented, we can define functions within a strip initialization that allow future access to strip data. For

2



example, within the function InitializeStrip, we define a function called TotalLength, taking a single ”Strip
ID” parameter, that returns the length of the strip. These functions serve the role of accessor methods in
object-oriented languages.

The Strip ID concept allows us to arrange, constrain, and optimize multiple strips individually. In
principle, we could relax entire groups of strips as a unit, but as of August 7, 2013, this capability is not
supported.

3 Basic Functionality

These sections contain the functions to model, compute with, and draw strips of paper in Mathematica.

3.1 Initialization

The ‘Initialization’ section of the code contains two functions. GetNextID[] returns a string suitable for
being a strip’s ID, and InitializeStrip ...

3.1.1 InitializeStrip

Takes: List of ten arguments, explained below
Returns: Null

InitializeStrip sets a new strip up with all the values it needs to be acted on by all our functions. It
takes a list with the following ten arguments:

1. Desired Strip ID, string

2. Starting point, xyz vector

3. Target endpoint, xyz vector

4. Starting orientation, 3×3 matrix, (Binormal, Tangent, Normal) as COLUMN vectors

5. Target end orientation, 3×3 matrix, (Binormal, Tangent, Normal) as COLUMN vectors

6. Total length, positive real number

7. Number of flat turns, nonnegative integer

8. Turn angle, real number

9. Initial “Theta” parameter list, list of angles between −π2 and π
2

10. Initial “Phi” parameter list, list of angles between −π and π, same length as “Theta” list

InitializeStrip associates these values, as well as a few values immediately derived from them, with the Strip
ID. Other functions can then call these values by the Strip ID and thus measure or interpret or change the
strip.

3.2 Energy function

This section contains functions to calculate the bending energy of strips, modelling their integral square
mean curvature.

3



3.2.1 CostCircles

Takes: List of two angles
Returns: Positive real number

The input angles specify a single fold on a strip of paper. The first, Theta, denotes the angle made
by the fold with a horizontal line running breadthwise across the strip. The second, Phi, measures the angle
between the planes containing the strip before and after the fold. CostCircles attempts to attribute a cost
to this fold by estimating its contribution to the total elastic bending potential of the strip, measured as the
integral of its mean curvature squared.

To represent the discrete fold as a continuous surface, we first attribute a region of the strip whose
curvature is to be approximated by the fold. The boundary of this region is obtained simply by translating
the fold up and down the strip by a fixed amount ε depending on the spacing between folds. We then
represent this region as a ”trough” where cross-sections by planes normal to the fold yield circular segments
tangent to the strip. Computing the total mean curvature of this trough gives the approximate contribution
of the fold.

The associated functions DCostCirclesTheta and DCostCirclesPhi, with the same input and
output types, give the derivatives of CostCircles with respect to its parameters Theta and Phi.

3.3 Matrix Operations

This section contains functions which calculate and transform strips’ orientation matrices. Many of them
are used extensively by the rest of our code.

3.3.1 M

Takes: List of two angles
Returns: 3×3 matrix

M is the matrix of the coordinate transformation of a fold with angles θ and φ.
M is derived using Euler angles. To transform the coordinate system from one fold to the next, three

rotations are necessary (see figure 2):

1. Rotate about Normal by θ;

2. Rotate about Binormal by φ;

3. Rotate about Normal by −θ.

This is equivalent to a ZXZ Euler angle transformation with angles θ, φ, and −θ, respectively. M is the
product of these three rotation matrices.

3.3.2 dMdθ

Takes: List of two angles
Returns: 3×3 matrix

dMdθ is the componentwise partial derivative of ‘M’ with respect to θ.

3.3.3 dMdφ

Takes: List of two angles
Returns: 3×3 matrix

dMdφ is the componentwise partial derivative of ‘M’ with respect to φ.

4



Figure 2: The three plane rotations to transform coordinates from one segment to the next

RN(θ) 

θ
RB(φ)

θθ
RN(-θ) 

θ

T

BN

3.3.4 PlaneRotMatrix

Takes: One angle
Returns: 3×3 matrix

PlaneRotMatrix returns the matrix corresponding to a rotation in the Binormal-Tangent plane, leaving
the Normal fixed.

3.3.5 TurnMatrix

Takes: Strip ID
Returns: 3×3 matrix

A strip may have a number of flat turns in it. These must all be the same angle, and they will be as
close to equally spaced along the strip as possible. TurnMatrix applies PlaneRotMatrix to obtain the matrix
used for turns in the given strip.

3.3.6 TurnSpots

Takes: Strip ID
Returns: List of singleton integers (or, column vector of integers)

TurnSpots calculates the indices at which to insert the turn matrix into the list of transformation
matrices. It separates the folds of the strip into one more part than there are turns and returns the indices
at the edges of the separation. If the division cannot be exactly even, “Ceiling” spreads the extra segments
as uniformly as possible. The indices are transposed for each of use with “Insert” in ‘MList’ below.

3.3.7 MList

Takes: List of a Strip ID
Returns: List of 3×3 matrices

MList calculates the transformation matrices for each segment of the given strip. It uses M on the
folds and employs TurnSpots and TurnMatrix to insert the turn transformations properly.

5



3.3.8 HeadList

Takes: List containing a Strip ID and a list of 3×3 matrices
Returns: List of 3×3 matrices

HeadList calculates partial products of a list of matrices. Usually, it is applied to ‘MList,’ which
results in a list of the orientation matrices at each segment of the given strip. The “IdentityMatrix” which
is prepended in HeadList represents the first segment, before any folds or turns are made. Premultiplication
by the strip’s StartMatrix reinforces the conventional use of HeadList already mentioned; in the one other
way HeadList is used (in the ‘PartialTails’ item in gradient calculations) this premultiplication is undone.

Given a strip’s start matrixM0 and a list (M1, . . . ,Mk), HeadList returns (M0, M0M1, M0M1M2, . . . , M0M1 · · ·Mk).
Orientation matrices are usually used as basis vectors. Interpreted as vectors, part i of HeadList gives

(Binormal,Tangent,Normal) of the ith segment as column vectors.
Since a strip is traveling in the direction of its tangent, its total displacement may be found by

summing the tangents at each segment and scaling by the segment length, a task easily accomplished by
suitably scaling the tangent column of the total of its HeadList.

3.3.9 TailList

Takes: List of a Strip ID
Returns: List of 3×3 matrices

TailList calculates partial products of a strip’s transformation matrices, counting from the end. It com-
putes the transformation matrices (M1, . . . ,Mk) with ‘MList,’ and then returns (M1 · · ·Mk, M2 · · ·Mk, . . . , Mk, ID),
where ID is the 3× 3 identity matrix.

3.3.10 r

Takes: Positive Integer
Returns: Positive Integer

r is designed so that MList〚r[i]〛= M[ith fold], i.e., r increments i past however many turns have
happened so far. r is a kind of complement to ‘TurnSpots’ in that the values skipped by r are exactly those
given by ‘TurnSpots.’ r is useful when we want to calculate partial derivatives of a product of matrices and
don’t want any terms corresponding to the (unchangable) turns.

r is defined inside the functions that use it.

3.4 Drawing strips

This section allows us to see in a graphics window what strips look like.

3.4.1 StripPolys

Takes: List of a Strip ID
Returns: List of lists of four xyz points. Each set of four points specifies a quadrilateral to be drawn.

StripPolys calculates the polygons to be drawn to visualize a strip. Strips extend a fixed width to
the left and right (i.e., the direction of the binormal and its opposite) of their primary direction of travel
(i.e., the tangent). At any fold, we can calculate the position of the left and right edge points of the strip as
a function of the center point of the fold, the tangent, the binormal, and the lateral angle θ (see figure 3).
This formula conveniently works for turns as well as folds, as long as we pretend that we’re turning by -1/2
the turn angle (to convince yourself of this, test a couple turn angles.). We add θs of 0 at the beginning and
end of the strip to ensure straight cuts there. Once we have these values, we tabulate them and organize
them into quadrilaterals.

6



Figure 3: Calculating endpoints of a fold to draw them

p
Θ

y

y = p + w B + w tan(θ) T

w

T

B

3.4.2 DrawAll

Takes: List of Strip IDs
Returns: 3D Graphics window

DrawAll produces a graphics window featuring all the strips in its argument. It applies StripPolys to
each strip, makes one big table with all the necessary quadrilaterals, and draws them with the “Polygon”
option of “Graphics3D.”

4 Optimization

4.1 Gradients

4.1.1 EnergyGrad

Takes: A StripID
Outputs: A list with twice as many elements as there are folds in the given strip.

Outputs the energy gradient of the given strip. Let Q denote the strip’s total energy as measured by
CostCircles, and let θi, and φi denote the values of Theta and Phi associated to the ith fold of the strip.
Then the output of EnergyGrad is { ∂Q∂θ1 ,

∂Q
∂φ1

, ∂Q∂θ2 ,
∂Q
∂φ2

, ... ∂Q∂θk ,
∂Q
∂φk
}.

4.1.2 ETNGrads

Takes: A StripID S
Outputs: A list of gradients for each of the three constraint curves (each one a list).

Let E denote the endpoint of S, and let Ef denote the desired endpoint. Similarly, let T and Tf
denote the actual and desired ending unit tangent vectors, and let N and Nf denote the actual and desired
ending normal vectors. The scalar values E∗ =‖E −Ef ‖2, T ∗ =‖T − Tf ‖2, and N∗ =‖N −Nf ‖2 measure
deviations from each of the three constraints; each is zero when the corresponding constraint is satisfied and
nonzero otherwise.

Thinking of E∗ as a function of the values θ1, φ1, θ2, φ2, ...θk, φk associated to the folds S, we com-
pute the gradient OE∗ = (∂E

∗

∂θ1
, ∂E

∗

∂φ1
, ∂Q∂θ2 ,

∂E∗

∂φ2
, ...∂E

∗

∂θk
, ∂E

∗

∂φk
). Similar computations generate OT ∗ and ON∗.

ETNGrads does these computations and outputs {OE∗,OT ∗,ON∗}.

7



Here’s how we computed those partial derivatives. LetM0 be the starting orientation and {Mi = M(θi, φi)}
the fold matrices. The endpoint constraint is

E = starting pt + (M0 +M0M1 + . . .+M0 · · ·Mk) · (0, 1, 0)T ,

the sum of the starting point and the tangent on each segment. We know that ‖x ‖2= x · x for all x, and
that (x · x)′ = 2x · x′; therefore

∂E∗

∂θi
=

∂

∂θi
‖E − Ef ‖2

= 2(E − Ef ) · ∂
∂θi

(E − Ef )

= 2(E − Ef ) · ∂
∂θi

[(M0 · · ·Mi + . . .+M0 · · ·Mk) · (0, 1, 0)T ]

= 2(E − Ef ) ·M0 · · ·Mi−1
∂Mi

∂θi
· (ID +Mi+1 + . . .+Mi+1 · · ·Mk) · (0, 1, 0)T .

Partials with respect to φi are identical. Our “PartialTails” operation computes the matrix sum in
the above formula, and “EndPointThetaPartials” (or Phi) computes the entire formula.

Regarding the tangent constraint, we note that

T = M0M1M2M3 · · ·Mk · (0, 1, 0)T

and that

∂T

∂θi
= M0M1M2M3 · · ·

∂M

∂θi
Mi+1 · · ·Mk.

Using the “HeadList” function, the “TailList” function, and the “r” function, we express this in our code by
noting that the left-hand part of the above equation is the r[i]th term in HeadList[S,MList[S]], and that the
right-hand part is (r[i]+1)st term in TailList[S]. In code, therefore,

∂T

∂θi
= HeadList[S,MList[S]]〚r[i]+1〛 · dMdθ[θi, φi] · TailList[S]〚r[i+ 1]〛.

To calculate ∂
∂θi
‖T − Tf ‖2, we use the same trick as above: ∂

∂θi
‖T − Tf ‖2= 2(T − Tf ) · ∂

∂θi
T .

In the code, the quantity T − Tf is called “EndTangentDiff,” and the factor of 2 is dropped. The list
named “TangentThetaPartials” computes ∂

∂θi
‖T − Tf ‖2 for each valid i, and returns a table of all of them.

The list named “TangentPhiPartials” does the same for φ, using an analogous method.
We apply the same reasoning, replacing T with N, to get the lists NormalThetaPartials and Normal-

PhiPartials describing the behavior of the normal.

4.2 Step Functions

4.2.1 StepDownEndPoint

Takes: A StripID S and a stepsize k
Outputs: A modified StripID and the same stepsize k

let θi, and φi denote the values of Theta and Phi associated to the ith fold of S. The configuration
of S is characterized by C = θ1, φ1, θ2, φ2, ...θk, φk. StepDownEndPoint perturbs these values by an amount
proportional to k in an attempt to bring the endpoints of S closer together.

Define E∗ : R2k → R as above. Because E∗ = 0 when the endpoint constraint is satisfied and E∗ > 0
otherwise, the space of configurations with a valid endpoint is the level set {E∗ = 0}. Generally speaking,
then, decreasing E∗ corresponds to moving the endpoints closer together.

8



By definition, −OE∗ gives the direction of greatest decrease for E∗, so that E∗(C − λ(OE∗)(C)) <
E∗(C) for small λ. The function chooses a step size (called OtherStepSize) based on how far away the
endpoints are in the starting configuration C: the further apart, the larger the step size. It then scales this
step size by the input value k and alters S accordingly. The configuration C of S becomes C−OtherStepSize∗
k ∗ (OE∗)(C). k is not altered, but is returned along with the altered strip for convenience.

While Mathematica is not object-oriented, it is most intuitive to view StepDownEndPoint as a mutator
method on the “object” S. The name of S remains unchanged, but its attributes change. The optimization
method used here is commonly known as gradient descent.

4.2.2 MeetEndPoints

Takes: A StripID S and a stepsize k
Outputs: A modified S and the same stepsize k

Continually calls StepDownEndPoint[{S, k}] until the endpoint of S is within a set tolerance of the
desired endpoint.

4.2.3 StepDownTangent

Takes: A StripID S and a stepsize k
Outputs: A modified S and the same stepsize k

Analogous to StepDownEndPoint, this function changes the configuration of S slightly in an attempt
to move its ending tangent vector closer to the desired ending tangent. The method used is exactly the same:
(OT ∗)(S) provides a viable step direction, and step size is chosen proportional to both the input k and the
norm of the difference between the actual and desired tangent.

4.2.4 StepDownNormal

Takes: A StripID S and a stepsize k
Outputs: A modified S and the same stepsize k

Analogous to StepDownTangent; replace “tangent” with “normal.”

4.3 Satisfying Constraints

4.3.1 FixConstraints

Takes: A StripID S and a stepsize k
Outputs: A modified S and the same stepsize k

Summarized by the following four steps:

1. Place the endpoint of S in the right place (see MeetEndPoints).

2. Call StepDownTangent[{S, k}] until the tangent is within a specified tolerance of the desired tangent.

3. Repeat step 2 for the normal vector.

4. If all three constraints are met (to within some tolerance), return. Otherwise, go back to step 1.

Notice that three of these steps are optimizations of their own, and the fourth calls for repeating the
first three. While this type of “loop within loop” structure proved unavoidable, FixETN (below) achieves
the goal of fixing all constraints more elegantly. In particular, we can improve one constraint without ruining
another too much.

9



4.3.2 FixETN

Takes: A StripID S and a stepsize k
Outputs: A modified S and the same stepsize k

A more sophisticated version of FixConstraints. Rather than stepping blindly down each constraint
function, we take care not to disrupt other constraints each time we step. Henceforth, a “valid” configuration
is one that satisfies all constraints.

Consider once again the vector C = (θ1, φ1, θ2, φ2, ...θk, φk) of fold angles associated to S. These
entirely characterize the configuration of S in space, so that the set of all configurations satisfying a given
constraint is a subset of R2k. This suggests a way to move towards one constraint space while remaining in
another: project the step vector onto the tangent space to the second constraint curve at C. In this way, we
remain close to the second constraint space but still land closer to the first.

In order to accomplish such a projection, we need to know the normal to the space corresponding
to the constraint that is to be preserved. This is roughly approximated by the normalized gradient of that
constraint. Using these methods, we generate the following improved step functions:

1. StepDownTanE moves towards the correct final tangent while preserving the correct endpoint.

2. StepDownNormT moves towards the correct final normal while preserving the correct tangent.

3. StepDownEndN moves towards the correct endpoint while preserving the final normal.

FixETN behaves like FixConstraints, but with these improved step functions.

4.4 Optimizing Under Constraints

4.4.1 Optimize

Takes: A StripID S with all constraints satisfied, and a stepsize k
Outputs: A modified S and the same stepsize k

An attempt to decrease the total energy of the given strip while still maintaining all constraints.
Proceeds by the following steps:

1. Compute all gradients of the given strip (via ETNGrads and EnergyGrad).

2. Orthogonalize the three constraint gradients. This gives an orthonormal basis for the orthogonal
compliment to the set of valid configurations.

3. Using this basis, project the energy gradient so that it lies in the tangent space to the set of valid
configurations. This projected gradient is labeled ”EnergyAlong.”

4. Take a step down EnergyAlong (i.e. in the direction of -EnergyAlong) proportional to k and see if the
total energy decreases. If not, undo the step, halve k, and repeat. Continue until a suitable step size
is found.

5. Using FixETN, fix the constraints of the resulting strip. Compare the total energy of the current strip
to the initial total energy (at step 1). If the energy has decreased overall, return. Otherwise, halve the
current k again and repeat from step 1.

The method is recursive; it calls itself with successively smaller k-values until a suitable one is found.
Currently, Print statements in the code output pictures after each recursion and messages indicating where
the recursion occured. The recursion is guaranteed to end, because a sufficiently small step down the energy
gradient always decreases the energy.

10



Figure 4: Triangulating a regular hyperbolic n-gon with interior angles α

π/n 

α/2

A B

C

a
b

c

5 Toward Polygon Meshes

5.1 Strip n

This section lets us retrieve information about position and orientation anywhere along a strip. This allows
us to “tape” struts partway along a strip.

5.1.1 GetPositionAlong

Takes: List containing a Strip ID and a real number ∈ [0, 1]
Returns: XYZ coordinates of a point

GetPositionAlong yields the coordinates of the point any fraction of the way along the total length of
a strip. This point is the sum of three things: the starting point of the strip; displacement due to a number
of full segments; and displacement due to part of a final segment. The integer ‘index’ measures how many
full segments are traversed. Segments 1-index displace by the sum of their tangents, scaled by the segment
length, and the final segment’s tangent must be scaled by both SegmentLength and the fraction by which it
is traversed. The function is piecewise to avoid out-of-bounds indices in HeadPart.

5.1.2 GetOrientationAlong

Takes: List containing a Strip ID and a real number ∈ [0, 1]
Returns: 3×3 matrix

GetOrientationAlong yields the orientation matrix at a point any fraction of the way along the total
length of a strip. This depends only on which segment the point is on. ‘Index’ calculates which segment this
is. If the point is exactly on a fold or turn, the next segment is used, excepting only the endpoint of the
strip, which uses the last segment.

5.2 Hyperbolic polygon tools

This section has functions for calculating lengths in regular hyperbolic polygons, and for automating the
initialization of a regular n-gon.

11



5.2.1 CentertoMidpoint

Takes: Integer ≥ 3 and angle ∈ (0, π)
Returns: Real number

CentertoMidpoint uses the hyperbolic law of cosines to calculate the distance from the center of a
regular n-gon with interior angles α to the midpoint of a side. Only works if arguments specify a shape that
is actually hyperbolic. See figure 4.

5.2.2 CentertoCorner

Takes: Integer ≥ 3 and angle ∈ (0, π)
Returns: Real number

CentertoCorner uses the hyperbolic law of cosines to calculate the distance from the center of a regular
n-gon with interior angles α to a corner. Only works if arguments specify a shape that is actually hyperbolic.
See figure 4.

5.2.3 NgonHalfSidelength

Takes: Integer ≥ 3 and angle ∈ (0, π)
Returns: Real number

NgonHalfSidelength uses the hyperbolic law of cosines to calculate half the sidelength of a regular
n-gon with interior angles α. Only works if arguments specify a shape that is actually hyperbolic. See figure
4.

5.3 Polygon Meshes

To make a polygon mesh, start by making a polygon border with MakeNgonBorder. Optimize it. Then add
a single strut across the center with MakeCenterStrut. Optimize it. Then add more struts as preferred with
MakeSideStrut and MakeCornerStrut, optimizing each one manually.

The recommended optimization for each strip consists of FixETN followed by repeating Optimize until
the energy is not changing much with each step. These functions might take dozens of seconds. If FixETN
doesn’t return, you may need to fudge the length of the strut a bit- make it 2% longer and try again.

It’s best to add struts one at a time, relaxing each one manually. We weren’t able to automate the
process of adding an entire level of struts at once.

5.3.1 MakeNgonBorder

Takes: List containing an integer ≥ 3 and an angle ∈ (0, π)
Returns: Strip ID

MakeNgonBorder initializes a strip with the values and size of a regular n-gon with interior angles
α. Total length is only correct for hyperbolic shapes. Strip is given an arbitrary inital curvature, and no
optimization is included.

5.3.2 MakeCenterStrut

Takes: Strip ID of a hyperbolic polygon
Returns: New Strip ID

MakeCenterStrut initializes a strip running across the center of the given polygon. Argument must
be a regular hyperbolic polygon. No optimization is included.

12



5.3.3 MakeSideStrut

Takes: List containing the ID of a hyperbolic n-gon, the ID of its center strut, and an integer i from 1 to n− 1
Returns: New Strip ID

MakeSideStrut initializes a strip running from the center point of the center strip to the midpoint of
the (i+ 1)st side of the polygon. No optimization is included.

5.3.4 MakeCornerStrut

Takes: List containing the ID of a hyperbolic n-gon, the ID of its center strut, and an integer i from 1 to n
Returns: New Strip ID

MakeCornerStrut initializes a strip running from the center point of the center strip to the ith vertex
of the polygon. No optimization is included.

6 Future Directions

The clearest path of research is to finish the simulation of meshes by allowing an entire mesh to relax at
once. This would entail not only streamlining and effectively automating the process of relaxing interior
strips to fit the form of an exterior boundary, but also allowing these strips to push at the boundary. Once
a global energy minimum is found for the entire mesh, the model of physical paper meshes is complete.

Generally, we would like to know where and how the paper model fails. It would be instructive to
attempt to apply the central argument of Hilbert’s embedding theorem to the fully relaxed meshes. This
would involve tracking the asymptotic curvature lines on which the mean curvature is zero. According to
Hilbert’s theorem, these lines should become arbitrarily dense as the area represented grows, yielding a
singularity that prevents completeness of the surface. Whether the error lies in the curvature, smoothness,
or regularity of the meshes has yet to be discerned.

13


