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1 Billiards and related systems

1.1 Polygonal outer billiards in the hyperbolic plane

The outer billiard about a convex polygon P in the plane R2 is a piece-wise
isometry, T , of the exterior of P defined as follows: given a point x outside of
P , find the support line to P through x having P on the left, and define T (x)
to be the reflection of x in the support vertex. See [10, 35].

Figure 1: The outer billiard map in the plane

C. Culter proved (Penn State REU 2004) that every polygon in the plane
admits periodic outer billiard orbits, see [36]. Outer billiard can be defined on
the sphere and in the hyperbolic plane. On the sphere, there exist polygons
without periodic outer billiard orbits. Conjecture: every polygonal outer bil-
liard in the hyperbolic plane has periodic orbits. These orbits may lie on the
circle at infinity.

Figure 2: Outer billiards on equilateral triangles in the hyperbolic plane
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Figure 2 illustrates the complexity of this system, even in the case of an
equilateral triangle: the white discs are periodic domains of the outer billiard
map.

Another interesting problem is to describe polygonal outer billiard tables in
the hyperbolic plane for which all orbits are periodic. For example, right-angled
regular n-gons (with n ≥ 5) have this property, see [9]. In the affine plane, every
outer billiard orbit about a lattice polygon is periodic.

1.2 Polyhedral outer billiards in 4-dimensional space

Let M be a closed convex hypersurface in C2. For a point x ∈ M , let n(x) be
the outer unit normal vector. The outer billiard map T of the exterior of M is
defined as follows. For t > 0, consider points y = x+ itn(x) and z = x− itn(x)
(of course, i =

√
−1); then T (y) = z. One can prove that for every y outside of

M there exists a unique x ∈ M and t > 0 such that y = x + itn(x), hence the
map T is well defined. See [10, 35] for more details.

Problem: study the dynamics of the outer billiard map when M is the
surface of a regular polyhedron in C2.

In dimension four, there are six regular polyhedra. Even for a regular sim-
plex, one expects an interesting dynamical system.

In the plane, a regular pentagon (and other regular n-gons with n 6= 3, 4, 6)
yields a beautiful fractal set, the closure of an infinite orbit of the outer billiard
map. See Figure 3.

Figure 3: Outer billiards on regular n-gons: n = 5, 8, 12

1.3 Outer billiards about piecewise circular curves

An interesting class of curves to study as outer billiard tables are piecewise
circular curves. For such curves, the outer billiard map is continuous (although
not everywhere differentiable). One asks the usual questions: are there periodic
orbits? can orbits escape to infinity? can orbits fall in the outer billiard table?
and so on. See [1] for the geometry of piecewise circular curves.
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1.4 Magnetic billiards

Magnetic billiards describe free motion of a charge in magnetic field with elastic
reflection of the boundary of a plane domain (a billiard table). If the magnetic
field is constant then the charge moves along an arc of a circle of a fixed radius.
See [3] or [34].

Not much is known about magnetic billiards. An interesting problem is
to study magnetic billiard inside a square in constant magnetic field. One can
unfold a trajectory to a pice-wise circular curve (similarly to unfolding a billiard
trajectory to a straight line). Will these curves be unbounded? Will they have
limiting directions?

One can ask the same question about other polygons that tile by reflection
(such as the 30◦, 60◦, 90◦ triangle).

1.5 Negative Snell law

Snell’s Law describes what happens to a beam of light when it passes from one
medium to another − say, from air to glass. The angles of incidence and refrac-
tion are related to the refractive indices of the two media. Recently, physicists
have discovered materials that have negative indices of refraction.

Consider a two-colorable tiling where the tiles are fabricated out of materials
with opposite indices of refraction. If we shine a beam of light into the tiling,
then when it crosses a boundary between tiles, it “bounces back” with an angle
of reflection equal to the angle of incidence. An example is below. (In fact, we
will generally ignore the requirement that the tiling is two-colorable.)

γ

α

β β

γ

α

Figure 4: A periodic path with period 8 and angle π/3

A recent paper [26] investigated some of the questions associated to these
tilings. For the square grid tiling, there are only two possibilities: the path
forms a period-4 rhombus, or an infinite horizontal or vertical saw-tooth pattern.
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For the equilateral triangle tiling, every path circles a vertex periodically, with
period 6.

At Summer@ICERM 2012, two students studied this system and got some
results about its local behavior. Since then, our TA Diana Davis has been
studying parallelogram tilings like the one above, for various length and angle
parameters.

Still, most of the basic questions about dynamical systems remain open for
this system, and we will work on resolving them.

1.6 Spherical and hyperbolic versions of Gutkin’s theorem

E. Gutkin asked the following question: given a plane oval γ, assume that two
points, x and y, can “chase” each other around γ in such a way that the angle
made by the chord xy with γ at both end points has a constant value, say, α.
If γ is not a circle, what are possible values of α?

The answer is as follows: a necessary and sufficient condition is that there
exists n ≥ 2 such that n tanα = tan(nα). See [23, 32].

In terms of billiards, the billiard ball map in γ has an invariant circle given
by the condition that the angle made by the trajectories with the boundary of
the table is equal to α. The result can be also interpreted in terms of capillary
floating with zero gravity in neutral equilibrium, see [12, 13].

Problem: find analogs of this result in the spherical and hyperbolic geome-
tries. What about curves in higher dimensional spaces?

2 Geometry

2.1 The modeling of constant curvature surfaces in space

Find a surface of constant negative curvature in space.
This does not seem like a remarkably difficult problem: for example, we know

quite a lot about the intrinsic properties of curvature, and have the powerful
Hilbert Embedding Theorem, which at least places heavy extrinsic constraints
on constant negative curvature surfaces in space. Negatively curved surfaces
are ubiquitous in nature, and there are several nice methods for making models
of constant negative curvature surfaces out of paper, yarn or steel [37].

The first sign of trouble, perhaps, is that very few constant negative cur-
vature surfaces appear to be explicitly described, say through a parametric
equation—this author knows of none discovered in the last 125 years.

The problem here is to generate good computer approximations to such a
surface, by “evolving” discrete models. Though these techniques have been
used with spectacular results for minimal surfaces, there are several numeric,
computational and mathematical subtleties that come into play in this setting.

Two approaches are proposed: The first is to mimic the assembly of straight
strips of paper outlining a surface, much like the sculpture shown in Figure
5. The lengths of the strips, and the angles they meet at, are fixed, but their
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Figure 5: A surface of constant negative curvature

arrangement in space is not; additionally one would like to minimize the total
amount of “bending energy”, that is, the strips are viewed as trying to lie
as straight and flat as possible. This approach guarantees that curvature is
constant at all steps, but appears to be computationally ill-posed.

The second is to consider a random mesh in the hyperbolic plane; each edge
of the mesh has a certain length. In space, a combinatorially equivalent mesh
is evolved, through simulated annealing, driving its edge lengths to the corre-
sponding lengths in the hyperbolic mesh. One open experimental question is:
As the edges approach the correct lengths, does the discrete curvature converge
uniformly across the surface?

(This problem arose in a very applied setting— the design of an exhibit on
curvature for the new Museum of Mathematics.)

2.2 Origami hyperbolic paraboloid

There is a common origami construction depicted in Figure 6. The pleated
surface looks like a hyperbolic paraboloid and is often called so in the origami
literature.

The problem is to explain this construction. If one assumes that paper
is not stretchable and the fold lines are straight then one can prove that this
construction is mathematically impossible, see [7]. The explanation is that there
exist invisible folds along the diagonals of the elementary trapezoids in Figure
6 left. Assuming this to hold, and given a particular patterns of these diagonals
(one can choose one of the two for each trapezoid), what is the shape of the
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Figure 6: Hyperbolic paraboloid

piece-wise linear surface obtained by folding?

Figure 7: A circular pleated surface

A more general question: what is the result of a similar construction for
other patterns of folding lines? See, e.g., Figure 7. See [14] concerning folding
paper along curved lines and the books [8, 29] for mathematical paper folding.

2.3 The unicycle problem and its ramifications

A mathematical model of a bicycle is an oriented unit segment AB in the plane
that can move in such a way that the trajectory of the rear end A is always
tangent to the segment. Sometimes the trajectories of points A and B coincide
(say, riding along a straight line).

The following construction is due to D. Finn [11]. Let γ(t), t ∈ [0, L] be
an arc length parameterized smooth curve in the plane which coincides with
all derivatives, for t = 0 and t = L, with the x-axis at points (0, 0) and (1, 0),
respectively. One uses γ as a “seed” trajectory of the rear wheel of a bicycle.
Then the new curve Γ = T (γ) = γ+γ′ is also tangent to the horizontal axis with
all derivatives at its end points (1, 0) and (2, 0). One can iterate this procedure
yielding a smooth infinite forward bicycle trajectory T such that the tracks of
the rear and the front wheels coincide. See Figure 8.
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Figure 8: A unicycle track

It is proved in [25] that the number of intersections of each next arc of T
with the x-axis is greater than that of the previous one. Likewise, the number
of local maxima and minima of the height function y increases with each step
of the construction. As a result of Summer@ICERM 2012 research [28], we
also know that the number of inflection points increases with each step of the
construction.

Conjecture: Unless γ is a straight segment, the amplitude of the curve T
is unbounded, i.e., T is not contained in any horizontal strip, T is not a graph,
and T is not embedded, that is, it starts to intersect itself.

Here is a related problem. Given an oriented oval γ, draw the unit tangent
segments to γ, and let γ1 be the locus of their endpoints. We get a map γ 7→ γ1.

Conjecture: If all iterations of this map are convex curves then γ is a
circle, see Figure 9.

Figure 9: Convexity is fragile

A justification is a linearization of this statement, which is a theorem: Let F
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be a periodic function, and consider the linear map F 7→ F +F ′. If all iterations
of F are positive then V is a positive constant.

2.4 Tripod configurations

A tripod configuration for a plane curve γ is a triple of points on the curve such
that the normals to γ at these points are concurrent and make the angles of
120◦ with each other. It is proved in [33] that each plane oval has at least two
tripods. Extend this result to non-convex and to self-intersecting curves. What
about closed curves in 3-space: do they necessarily admit tripod configurations?

A possible approach to the problem is variational: a tripod ABCD, where
points A,B,C are on the curve and D is the intersection point of the normals
making the angles of 120◦, is a critical point for the function |AD|+|BD|+|CD|
on quadruples of points ABCD with the constraint A,B,C ∈ γ.

2.5 Self-dual curves and surfaces

Projective duality is a correspondence between points of the real projective
plane RP2 and lines of the dual projective plane (RP2)∗; projective duality
extends to smooth and piece-wise smooth curves, taking a curve γ ⊂ RP2 (a
one-parameter family of points) to the envelope γ∗ ⊂ (RP2)∗ of the respective
one parameter family of dual lines. A curve γ is called projectively self-dual if
there exists a projective transformation from RP2 to (RP2)∗ that takes γ to
γ∗. Likewise one defines self-dual polygons.

The general problem of describing projectively self-dual curves is poorly
understood, see [15] for a description of projectively self-dual polygons and
some results on self-dual curves.

Problem: extend the results of [15] to projectively self-dual hypersurfaces
and polyhedra, and to projectively self-dual non-degenerate curves and polygons
in multi-dimensional projective spaces.

A non-degenerate curve γ in RPn has the osculating hyperplane at each
point; a hyperplane in RPn is a point in the dual projective space (RPn)∗, and
this one-parameter family of points in (RPn)∗ is the dual curve γ∗.

All these problems have affine analogs in which the curves (hypersurfaces)
are assumed to be star-shaped and the projective duality is replaced by the
polar duality.

2.6 Cayley-style theorem for null geodesics on an ellipsoid
in Minkowski space and for the zig-zag theorem

The following Poncelet-style theorem was proved in [16]. Consider an ellipsoid

x2

a
+
y2

b
+
z2

c
= 1, a, b, c > 0
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in three dimensional Minkowski space with the metric dx2 + dy2 − dz2. The
induced metric on the ellipsoid degenerates along the two “tropics”

z = ±c
√
x2

a2
+
y2

b2
;

the metric is Lorentz, of signature (+,−), in the “equatorial belt” bounded
by the tropics. Through every point of the equatorial belt there pass two null
geodesics of the Lorentz metric, the “right” and the “left” ones.

Call a chain of alternating left and right null geodesics, going from tropic to
tropic, an (n, r)-chain if it closes up after n steps and making r turns around the
equator. The theorem states that if there exists an (n, r)-chain of null geodesics
then every chain of null geodesics is an (n, r)-chain. See [16] for a discussion.

Problem: find conditions on the numbers a, b, c ensuring the existence of
(n, r)-chains.

For the classical Poncelet porism, such a formula is due to Cayley, see [21].
For the Poncelet porism, see [2] and [6].

A similar question can be asked about the zig-zag theorem [2, 4] concerning
two circles in Euclidean 3-space, positioned in such a way that, for some number
d, each point of either circle is distance d from exactly two points of the other
circle (this is not too restrictive). Consider a chain of points x1, x2, . . . so that
even points lie on one circle, odd points on another circle and |xi − xi+1| = d
for all i. The claim is that if one such chain closes up after n steps then so does
every such chain.

Problem: find conditions on the circles and d ensuring that the chain closes
after n steps making k turns around the circles.

Another problem is to generalize the zig-zag theorem to two circles in Eu-
clidean spaces of dimension 4 and 5, and to the spherical or hyperbolic spaces.

3 Quasi-periodic structures

3.1 Cut-and-project tiling in the hyperbolic plane

Throughout the 1980’s the “cut-and-project” method was widely studied as
a method for understanding conjectured structures of quasicrystals, physical
materials with apparently forbidden crystallographic structure, discovered in
1982 by Daniel Schechtman [30]. In Figure 10 (left) of the famous Penrose
tiles, the rhombuses seem to form squashed cubes— and indeed they are the
projections of faces in Z5, those closest to a particular plane cutting through
this lattice. More precisely, we might typically take two non-trivial subspaces
V1 and V2 of Rn such that V1 ⊕ V2 = Rn; letting π1 be the projection of Rn

to V1 with kernel V2 and π2 be the projection of Rn to V2 with kernel V1,
suppose π1(Zn) is one-to-one and π2(Zn) is dense in V2. Let Ω (the “acceptance
window”) be a compact set with non-empty interior; then a “cut-and-project
set” {π1(x) | x ∈ Zn, π2(x) ∈ Ω} ⊂ V1. A simple example, of a cut and project
set in the line, derived from R2, is shown in Figure 10, right.
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Figure 10: (Left) Tilings by the Penrose tiles appear to be formed from squashed
cubes—and indeed they are; the tiles are naturally projected from Z5 to R2 via
the cut-and-project method. (Right) A simple example of a cut-and-project
set in the line; notice the interesting pattern of “long” and “short” intervals:
...lslsllslsllsllslsllsllslsllslsllsllsl... which is highly regular, yet
is not periodic.

The method has been extensively explored in Euclidean space, but not else-
where.

Samuel Petite has proposed an approach to constructing cut-and-project
tilings in the hyperbolic plane; this project is to work out the details and produce
actual tilings, almost certainly stimulating further research. His approach is to
construct a co-cocompact, irreducible lattice within PSL(2,R)2, the group of
isometries of H2×H2. That is, of course, the mathematical heart of the problem;
once this is in hand, this lattice induces an action on H2 × H2; some orbit is
chosen, and the points within some fixed distance of 0×H2 are cut and projected
to the hyperbolic plane. The choice of orbit and window may provide interesting
questions.

In particular, many Euclidean cut-and-project tilings exhibit a self-similar
structure–exact conditions for this have been extensively studied. In the hyper-
bolic plane, no self-similarity is possible. On the other hand, as discussed in the
next section, a rich variety of highly organized, yet non-periodic structures are
possible—does this cut-and-project method correspond to these?

3.2 Aperiodic tiles in other geometries

Aperiodic sets of tiles are those that can form tilings, but cannot form any pe-
riodic tiling. It is quite remarkable, really, that this is possible at all—somehow
translational order has to be disrupted at all scales.

The most famous of these sets is surely the Penrose tiles, shown in Figure 10
[22]. In the Euclidean plane, higher dimensional Euclidean spaces, the hyper-
bolic plane, and other settings quite a lot is known. (One survey on aperiodic
tile sets and related issues appears at [20].)
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Figure 11: Tilings by two weakly aperiodic sets of tiles in H2. On the left, a
single aperiodic “square” with horocyclic top and bottom—Can you supply the
proof that there can be no compact fundamental domain for a tiling by these
tiles? At right, tiles corresponding to the “Fibonacci” symbolic substitution
system, in which strings of 0’s and 1’s have each 0 replaced with 10 and each 1

replaced with 110 (corresponding to one string of 0 and 1 tiles sitting on top of
the replacement string of tiles. Note that the pattern of 0’s and 1’s is the same
as the pattern of l’s and s’s in Figure 10.

We distinguish “weakly” aperiodic sets of tiles —those that form tilings but
cannot form any tiling with a co-compact symmetry— and “strongly” aperiodic
sets of tiles, which can only form tilings with no infinitely cyclic symmetry
whatsoever. In hyperbolic space, at least, it is almost trivial to construct weakly
aperiodic sets—the tiles shown in Figure 11 are example. It is much more subtle
to find strongly aperiodic ones [18].

In 1992 Block and Weinberger gave a general, but relatively abstract, con-
struction for weakly aperiodic sets of tiles in a wide range of “non-amenable”

spaces [5], including ˜PSL(2,R). S. Mozes gave another construction in 1997.[27]
The first question here is to produce an explicit description of a weakly ape-

riodic sets of tiles in ˜PSL(2,R), and then leverage the constructions of strongly
aperiodic sets of tiles in H2 to produce the first explicit construction of strongly

aperiodic sets of tiles in ˜PSL(2,R). The project may be continued, using similar
techniques to produce strongly aperiodic sets of tiles in other model geometries.

3.3 Orbits of symbolic substitutions and points at infinity
for tilings

At right in Figure 11, we see a tiling of H2; infinite rows of tiles correspond
to infinite strings of 0’s and 1’s, and one row sits atop another if they are
related by a particular symbolic substitution, 0 7→ 10, 1 7→ 110. In fact, the
entire tiling corresponds, precisely to an orbit, under this substitution, in the
space of all infinite strings of 0’s and 1’s. It is not difficult to show that, even
up to “reindexing” there are uncountably many distinct orbits (all of which
look exactly the same in any finite region) corresponding to uncountably many
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Figure 12: (Compare to the right of Figure 11) The {7, 3} tiling has been
partitioned into strips corresponding to an orbit under the Fibonacci symbolic
substitution system. Does every point at infinity uniquely correspond to such a
partition?

distinct tilings, up to congruence, by these tiles (ditto). The paper [19] contains
many definitions, examples, problems and applications.

Now consider a regular tiling of the hyperbolic plane, say, {7, 3}, the tiling by
heptagons meeting three at a vertex. As shown in Figure 3.3, we may consider
such a tiling as stacked ribbons, one tile thick, all converging on a single point
at infinity. Each tile is oriented in one of two ways within a ribbon, which we
label 0 or 1. Remarkably, each ribbon is related to the next by precisely the
substitution system described above, and, up to congruence, each division of
the heptagonal tiling corresponds, up to congruence, precisely to a tiling by the
tiles of Figure 11 and, up to reindexing, an orbit in the symbolic substitution
system.

It’s clear that such a division of a regular tiling must correspond to a par-
ticular point at infinity: as the strips are all of bounded distance apart, they
must all converge at a particular point. But the converse is not clear:

Fix a tiling of H2 (say {7, 3}) Given a point at infinity, is there a division of
the tiling into strips one tile across so that the strips all limit to this point? Is
this division unique?

The problem would settle the precise relationship between these substitution
systems and tilings of H2, within the broader context outlined in [19].

3.4 Quasiperiodic polyhedral foams

“Dodecafoam” is a self-similar tiling of space by dodecahedra, described more
precisely in [17], which appears to be closely related to the conjectured struc-
ture of certain “quasicrystals”[31]. Dodecafoam is defined through a particular
substitution on tiles in space, but in the end satisfies five local rules:
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Figure 13: Dodecafoam satisfies five local rules.

1. Dodecahedra meeting vertex to vertex are scaled to one another by −φ1 =

− 1+
√
5

2 through this vertex.

2. The center of each face of a dodecahedron meets the center of the face of
another, scaled by −φ2 through this center.

3. The center of each edge of a dodecahedron meets the center of the edge

of another, scaled by −φ3 or 0 through this center.

4. There are no chains of 4 dodecahedra meeting edge to edge.

and of course

0. The dodecahedra have disjoint interiors and the closure of their union is
the entire space.

The first question is whether or not any tiling of space by dodecahedra that
satisfies these rules necessarily non-periodic? Necessarily self-similar? Neces-
sarily the same precise recursive structure as dodecafoam?

If the answer to this last is “yes”, then nicely stated local matching rules
have been produced, local rules that guarantee the accurate assembly of tiles
into this particular globally defined structure. If the answer to the first is yes
and the third is “no”, then a larger, more loosely structured space of tilings is
available to explore. Finally, are there other interesting foams to be found.
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