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Tripod Configurations in the Plane

Definition 1

A tripod configuration of a closed plane curve γ consists of three normal
lines dropped from γ meeting at a single point (the tripod center) and
making angles of 2π

3 .

Definition 2

A locally convex curve is a curve with nowhere vanishing curvature.
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Existence of Tripod Configurations (Regular Polygons)

Definition 3

A tripod configuration of a closed polygon P consists of three lines
dropped from vertices of P meeting at a single point and making angles of
2π
3 such that each line is normal to a support line of P at the vertex

through which it passes.

Theorem 4 (Summer@ICERM 2013)

A regular polygon with n vertices has n tripod configurations if 3 - n and n
3

tripod configurations if 3 | n.
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Existence of Tripod Configurations (Plane Curves)

Theorem 5 (Tabachnikov 1995)

For any smooth convex closed curve there exist at least two tripod
configurations.

Theorem 6 (Kao and Wang 2012)

If γ is a closed locally convex curve with winding number n, then γ has at
least n2

3 tripod configurations.

Theorem 7 (Summer@ICERM 2013)

1 If γ is a closed locally convex curve with winding number n, then γ
has at least 2bn2+2

3 c tripod configurations.

2 Every plane curve has a tripod configuration.
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Proof of Theorem 7

Lemma 8

Given a triangle ABC , the largest equilateral triangle circumscribing it is
its antipedal triangle with respect to its first isogonic center.

Lemma 9

Let p, q, r be noncollinear points on a closed plane curve γ and let T be
an equilateral triangle with each side passing through one of the three
points. Then the equilateral triangle circumscribing γ with sides parallel to
T is at least as large as T .

Lemma 10

The largest equilateral triangle circumscribing a closed plane curve meets
the curve exactly once per side.
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Some Observations

At least how many critical points does a smooth function on a circle
have?

At least how many critical points does a smooth function on Sn have?
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The Classic Example

Let f : T 2 → R be the height function, or projection onto the z-axis.

let Ma = {x ∈ T 2 | f (x) < a ∈ R}.
Ma is every point in T 2 below the height of a.
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The Torus Continued...

The bottom is a critical point, a local minimum

The index of the Hessian at the local minimum is zero

Ma1 is homotopic to a 0-cell
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The Torus Continued...

The bottom point of the inner circle is a critical point, a saddle point

The index of the Hessian at the point is one

Ma1 is homotopic to a disk with a 1-cell attached.
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The Torus Continued...

We are not at a critical point of the function

Ma3 is homotopic to Ma2 , there has been no change in the homotopy
class.
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The Torus Continued...

The top point of the inner circle is a critical point, a saddle point

The index of the Hessian at the point is one

Ma4 is homotopic to a cylinder with a 1-cell attached
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The Torus Continued...

The top point of the torus is a critical point, a local maximum

The index of the Hessian at the point is two

Ma5 is homotopic to a punctured torus with a 2-cell attached
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Basic Definitions

Definition 11 (non-degenerate)

A critical point of a function f is said to be non-degenerate if the Hessian
of f at p is non-singular.

Definition 12 (Morse index)

The Morse index of a critical point p of a function f is the index of the
Hessian of f at p, i.e. the dimension of the largest subspace on which the
Hessian is negative definite.
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Important Results

Lemma 13 (The Morse Lemma)

If p is a non-degenerate critical point of f , then ∃φ, a chart of M, such
that xi (p) = 0∀i and f (x) = f (p)− x2

1 − · · · − x2
k + x2

k+1 + · · ·+ x2
n where

k is the index of p.

Theorem 14

Given a < b, if f −1[a, b] is compact and no critical values lie in the
interval [a, b] then Ma is a deformation retract of Mb.

Most importantly, this implies that Ma has the same homotopy class as
Mb.
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Important Results

The preceding lemma and theorem allow us to prove the following:

Theorem 15

If p is a non-degenerate critical point with Morse index k, f (p) = a and
then if we choose ε small enough so that f −1[a− ε, a + ε] is compact and
contains no critical values other than p, then Ma+ε is of the homotopy
class of Ma−ε with a k-cell attached.
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The Morse Inequalities

The preceding theorems show that the number of critical points is
equal to the number of cells in the cell structure of the manifold
defined by the function f .

This equality of the cell structure and the critical points can be used
to prove certain inequalities about critical points from the homotopy
class of a manifold.
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The Morse Inequalities

Corollary 16

Let Cλ denote the number of critical points of f with Morse index λ.∑
(−1)λCλ = χ(M)

Corollary 17

Cλ ≥ bλ(M)

Where bλ(M) is the λ’th Betti number of M.
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Recent Results

Our work mainly uses results about Morse Theory on manifolds with
boundary

Francois Laudenbach published a paper on Morse Theory on
manifolds with boundary in 2010

He derives Morse inequalities using a chain complex defined on
manifolds with boundary
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Morse Theory on Manifolds with Boundary

Two new types of critical points appear on the boundary, when the
gradient of f is normal to it.

Type N (Neumann)critical points occur when the gradient of f points
inward along the boundary.

Type D (Dirichlet) critical points occur when the gradient of f points
outward along the boundary.
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Morse Theory on Manifolds with Boundary

We obtain new Morse inequalities from the following fact:

Theorem 18

Let Cλ and Bλ be the number of critical points of index λ in the interior
and on the boundary (of D type) respectively. If P(t) is the Poincare
polynomial of M, C (t) =

∑
Cλtλ, and B(t) =

∑
Bλtλ+1, then:

B(t) + C (t)− P(t) = (1 + t)Q(t)

Where Q(t) is a polynomial with non-negative integer coefficients.
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Morse Theory and Tripod Configurations

We show that any convex curve in the plane and any convex curves
sufficiently close to a circle in spherical and hyperbolic geometry have at
least two tripod configurations.
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Morse Theory and Tripods - Planar Case

f : S1 × S1 × S1 × D→ R, (x , y , z , p) 7→ d(x , p) + d(y , p) + d(z , p)

Critical points of f where p ∈ D are tripod points.

y

z

x p ε

γ
γε
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Morse Theory and Tripods - Planar Case

Parallel curves have the same tripod configurations. “Boundary” critical
points of f when p ∈ ∂D and the evolute is small:

y
z

x
p y

z

x
p

y
z xp yz

x
p
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Morse Theory and Tripods - Planar Case

Use osculating circles to approximate the curve near “boundary” critical
points of f to compute the Hessian up to second order approximation:

oα
β

γ
δ

p

x

z

y

q

op = r
ox = r+ε
oq = d
qy = qz= R
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Morse Theory and Tripods - Planar Case

oα
β

γ
δ

p

x

z

y

q

op = r
ox = r+ε
oq = d
qy = qz= R

p = (−r cosα,−rsinα) ≈ (−r(1− α2

2
),−rα)

x = (−(r + ε) cosβ,−(r + ε) sinβ) ≈ (−(r + ε)(1− β2

2
),−(r + ε)β)

y = (d + R cos γ,R sin γ) ≈ (d + R(1− γ2

2
),Rγ)

z = (d + R cos δ,R sin δ) ≈ (d + R(1− δ2

2
),Rδ).
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Morse Theory and Tripods - Planar Case


r(r+ε)

ε − 2r(d+R)
d+R+r − r(r+e)

e
Rr

d+R+r
Rr

d+R+r

− r(r+e)
e

r(r+e)
e 0 0

Rr
d+R+r 0 −R(d+r)

d+R+r 0
Rr

d+R+r 0 0 −R(d+r)
d+R+r



Theorem 19

Given an n× n matrix A, call the determinant of the i × i upper-left corner
the ith leading minor and denote it by di . Assume that A is symmetric
and the di ’s are non-zero...Then d1, d2/d1, d3/d2, ..., dn/dn−1 are diagonal
entries in a diagonalization of A.
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Morse Theory and Tripods - Planar Case

Morse indices
Case 1: {

4, d > 0

3, d < 0

Case 2: {
3, d > 0

2, d < 0
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Morse Theory and Tripods - Planar Case

Theorem 18

Let Cλ and Bλ be the number of critical points of index λ in the interior
and on the boundary (of D type) respectively. If P(t) is the Poincare
polynomial of M, C (t) =

∑
Cλtλ, and B(t) =

∑
Bλtλ+1, then:

B(t) + C (t)− P(t) = (1 + t)Q(t)

Where Q(t) is a polynomial with non-negative integer coefficients.

A convex curve has as many “short” diameters (d < 0) as “long”
diameters (d > 0). Let m be the number of “short” (“long”) diameters.

2mt5 + 6mt4 + 2mt4 + 6mt3 + C (t)− (1 + t)3t2 = (1 + t)Q(t)

(1 + t)(2mt4 + 6mt3) + C (t)− (1 + t)3t2 = (1 + t)Q(t)

6(1 + t)|C (t)

So the curve has at least 2 tripod configurations.
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Morse Theory and Tripods - Spherical Case

The “small evolute” condition becomes a “close to a circle” condition on
the sphere. Use a second order approximation with geodesic circles.

o

p
x

y
z

q

op = r
ox = r+ε
oq = d
qy = qz = R
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Morse Theory and Tripods - Spherical Case

Morse indices (same as in planar case)
Case 1: {

4, d > 0

3, d < 0

Case 2: {
3, d > 0

2, d < 0
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Morse Theory and Tripods - Hyperbolic Plane Case

Use a second order approximation with geodesic circles in the Poincaré
disc model.

oα
β

γ
δ

p

x

z

y

q

op = r
ox = r+ε
oq = d
qy = qz = R
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Morse Theory and Tripods - Hyperbolic Plane Case

Morse indices (same as in planar case)
Case 1: {

4, d > 0

3, d < 0

Case 2: {
3, d > 0

2, d < 0
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