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We describe a number of interesting, open-ended problems in combinatorics, discrete geometry,
and number theory for study at the Summer@ICERM 2014 program. These problems arise in
current research, are amenable to computation and experimentation, and may be approached from
a number of different angles. A number of references are listed for each problem.

Periods of rational polygons. A rational polygon P is a polygon in the plane, all of whose
vertices have rational coordinates. If we dilate the polygon P by an integer k, the dilated polygon
is written as kP. It is a theorem that the number of integer points in the plane (a, b) ∈ Z2,
which are contained in kP, is given by a quasi-polynomial function of k. That is, |Z2 ∩ kP| =
area(P)k2 + a1(k)k + a0(k), where a1(k) and a0(k) are periodic functions of k.

The study of the periods of the number-theoretic functions a1(k) and a2(k) is an ongoing re-
search topic, but very little is known about them. We can experiment computationally with many
concrete examples, obtain conjectures about these periods, and then confirm and refine them. The
known theory, sometimes called Ehrhart theory of rational polytopes, extends naturally to higher
d-dimensional polytopes, where we get d-dimensional quasi-polynomials. Of course, computations
there become more challenging, although quite tractable up to, say, dimension d = 12. Among the
various applications are bounds on the Frobenius coin exchange problem, and discrete approxima-
tions to the volume of a polytope, which we call discrete volumes.

The analysis of the periods may be tackled by using pure combinatorics, or by using generating
functions and discrete Fourier analysis. In some recent work by Hasse and McAllister on “period
collapse,” the authors point out a fascinating conjecture telling us that if we have a period of 1 for
a rational polygon that is ‘supposed’ to have a priori a larger period, then we can dissect it into
smaller rational polygons, put them together again by using orthogonal transformations, and find
an integer polygon with integer vertices having the same discrete volume. This is, hence, a kind
of discrete form of Hilbert’s third problem, on equidecomposability. Some related work has been
carried out by the second author.
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Barker sequences. A Barker sequence is a finite sequence a1, . . . , an, each term ±1, with the
property that each of its aperiodic autocorrelations ck =

∑n
i=1 aiai+k with k > 0 is 0, 1, or −1. It is

widely conjectured that there are no Barker sequences with length greater than 13, and this problem
remains open. It is a special case of the well-known circulant Hadamard matrix conjecture, which
asserts that if an n×n circulant matrix with all entries ±1 has mutually orthogonal columns, then
n ≤ 4. A number of required conditions are known for n in these problems, so many in fact that it
was determined only recently that there exist positive integers n > 13 that cannot be disqualified
as the length of a Barker sequence. The first author, with P. Borwein, recently determined that
the smallest such integer is n = 3 979 201 339 721 749 133 016 171 583 224 100. This problem is also
related to several interesting questions regarding polynomials. For example, it is known that a long
Barker sequence gives rise in a natural way to a polynomial that is unusually flat over the unit
circle.

There are many avenues of future computational explorations available here, including improving
methods for finding exceptional integers in the Barker sequence or circulant Hadamard matrix
problem (this involves searches for Wieferich prime pairs (q, p), which satisfy qp−1 ≡ 1 mod p2),
and investigating variations of this problem, where one allows more freedom in the values of the
autocorrelations. For example, can one find an infinite family of binary sequences where all of the
off-peak aperiodic autocorrelations are small in some sense, say bounded by

√
n?
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Visualizing harmonic analysis: the zero set of the Fourier transform of a polygon.
We propose a visual study of the harmonic analysis of rational polygons. When we compute
the (continuous) Fourier transform of a rational polygon P, we obtain a function of two complex
variables, whose set of real zeros in R2 tells us whether P (multiply) tiles the plane or not. By
definition, we say that P multiply tiles the plane by a discrete set of translations if each point of
R2 is covered exactly the same number of times by some finite set of translates of P. When P is
symmetric about the origin (so x ∈ P if and only if −x ∈ P), it is straightforward that 1̂P(ξ) is
a real function of ξ. By an easy lemma, we know that the zero set of 1̂P(ξ) contains a lattice of
points if and only if P multiply tiles the plane with the set of translation vectors that comprise
its dual lattice. We may therefore study the continuous curves that form the real zeros of 1̂P(ξ),
searching for lattices in them.

The graphs of these zero sets are quite beautiful, forming a countable, nested collection of
continuous curves, and we begin to see some nice patterns in the plane; some of these patterns may
vary from being easy to being to very challenging to prove. For example, is each of these compact
continuous curves an algebraic curve? Some recent characterizations of multi-tiling polygons (and
convex bodies in general) appear in the work of the second author, joint with N. Gravin and
D. Shiryaev. But here we take a new direction.
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Reinhardt polygons. A Reinhardt polygon is a convex equilateral polygon in the plane with the
property that if all of its vertices at maximal distance from one another in the polygon are connected
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with line segments, then a cycle appears among these line segments. For example, a regular (2m+1)-
gon is a Reinhardt polygon, since the network of chords constructed in this case forms a regular star
polygon with 2m+ 1 points. Reinhardt polygons are extremal in a number of geometric problems,
for instance, they have maximal perimeter relative to their diameter. Drawings of these polygons,
with their internal chord structure shown, are quite striking. One may characterize Reinhardt
polygons in terms of polynomials having a certain pattern in their coefficients, and having a zero
at a particular root of unity. Some Reinhardt polygons, like the regular (2m + 1)-gons, exhibit
a particular pattern in their construction, and these are relatively well understood: if n is not a
power of 2, then there are on the order of 2n/p different Reinhardt n-gons exhibiting some kind of
periodic pattern, where p is the smallest odd prime divisor of n. However, sporadic examples also
occur: they first appear at n = 30, then at n = 42. Much is unknown about these, although it is
known that the number of solutions depends on arithmetic properties of n. Some recent work of
the first author, with K. Hare, shows that many sporadic examples exist for almost all integers n.
These results were discovered after experimenting with certain kinds of combinations of cyclotomic
polynomials. Much remains to explore, however, especially the case when n has three or more odd
prime divisors.
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Computational aspects of Dedekind sums. A Dedekind sum is a very useful generaliza-
tion of the greatest common divisor function. The 2-dimensional Dedekind sum, arising in the
study of the enumeration of lattice points in rational polygons, may be defined by s(a, b) :=∑b

k=1B1(k/b)B1(ak/b), where B1(x) := x − bxc − 1
2 is the first periodic Bernoulli polynomial.

Recently the second author studied the question of when two different Dedekind sums of the same
fixed modulus m are equal, that is, for which a and c is it true that s(a,m) = s(c,m)? This question
was motivated by a question in topology, coming from Lens spaces and studied by S. Jabuka. In
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recent joint work with S. Jabuka, X. Wang, and the second author, an answer was given when m
is prime, but the problem is completely open for a general integer m. The answer turns out to
have an application to correction terms in the recent development of the so-called Heegard-Floer
homology. But here we will focus on the simple and computational aspects of the equality of the
Dedekind sums, which is still open, as well as the equality of some of their natural generalizations.
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