CYCLIC EVASION IN THE FOUR BUG PROBLEM

Milana Golich, Anna Grim, Laura Vargas

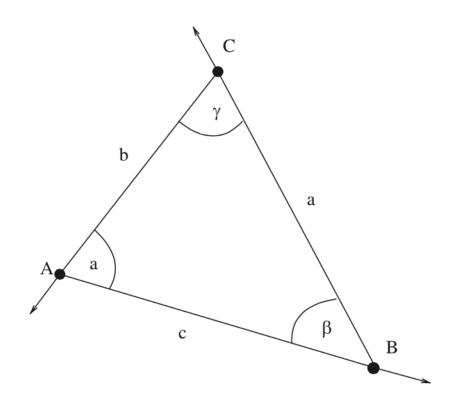
To determine the long term behavior of any four bug configuration

Outline

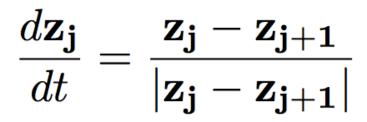
- I. Background
- II. Four Bug Problem
- III. Fixed Point Analysis
- IV. Stability Analysis
- V. Conclusion

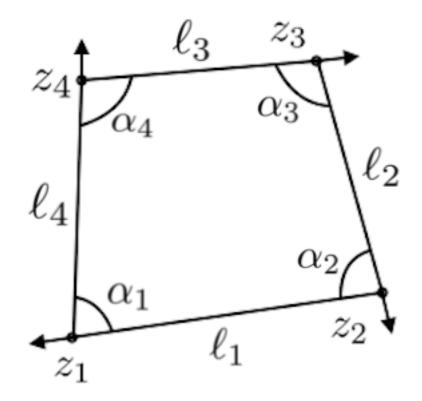
Background

- Pursuit and Evasion
- Three Bug Problem
 - Equilateral Triangles
- N-Bug Problem
 - Stable configurations

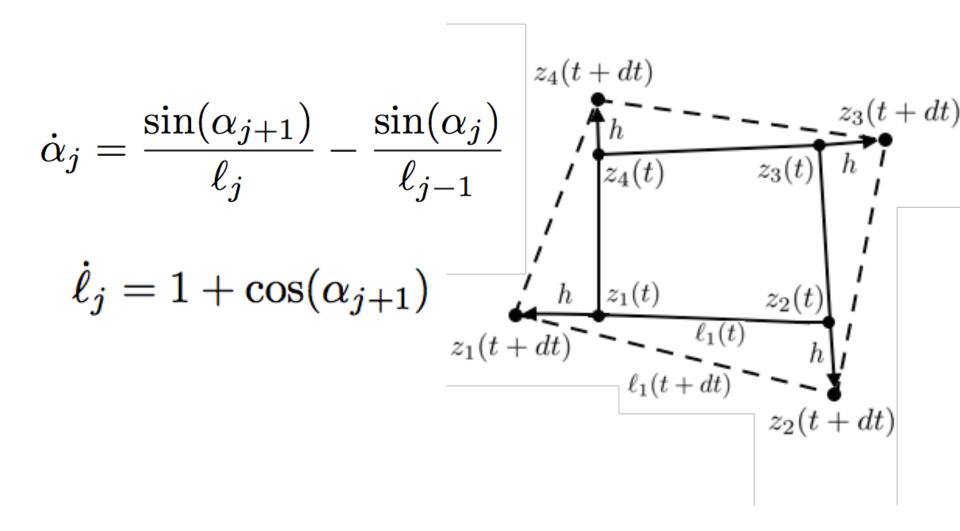


Four Bug Problem

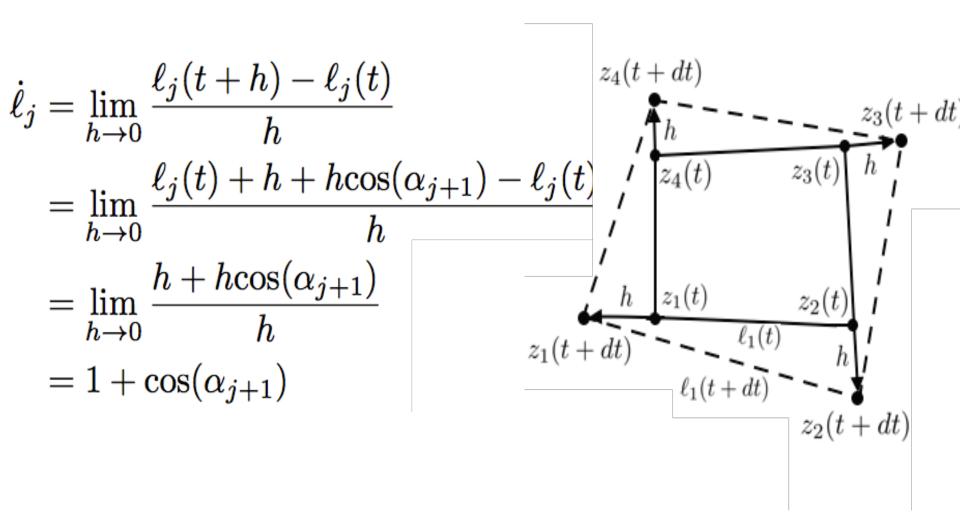




Derivation



Derivation

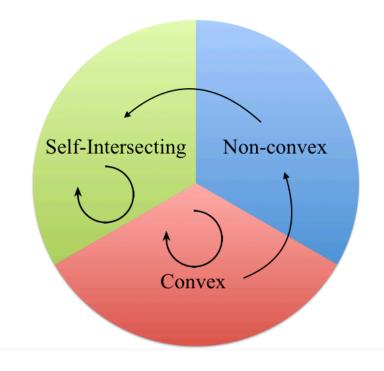


Fixed Points

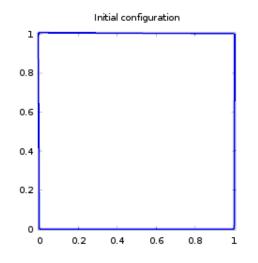
Theorem 1.1: The only fixed configurations for any four bug configuration are the selfintersecting line and square configuration

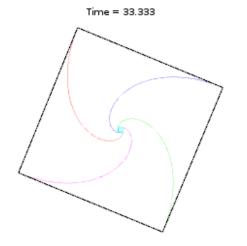
Shape Evolution

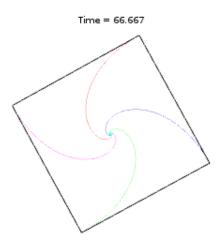
- I. Convex
 - •Convex
 - •Self-intersecting
- II. Non-convex •Self-intersecting
- III. Self-Intersecting
 •Self-intersecting

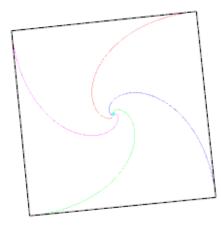


Evolution of a Square

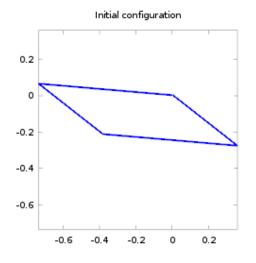


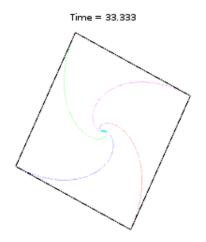




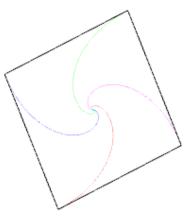


Evolution of a Parallelogram

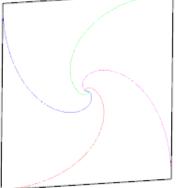




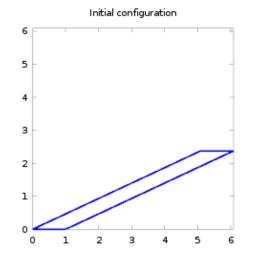
Time = 66.666

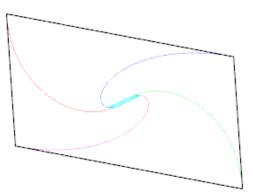


Time = 99.999



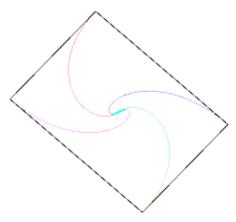
Evolution of a Parallelogram

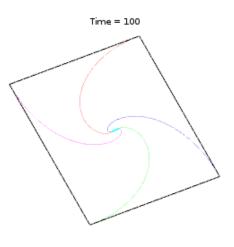




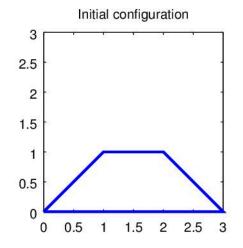
Time = 33.333

Time = 66.667

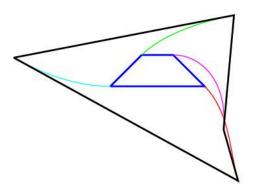


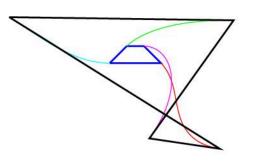


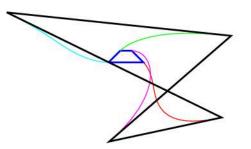
Evolution of a Convex Configuration



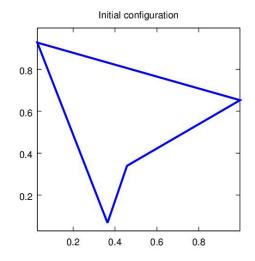
Time = 3.3

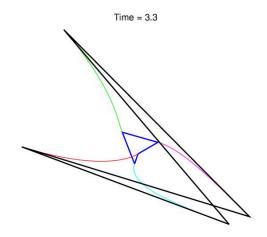


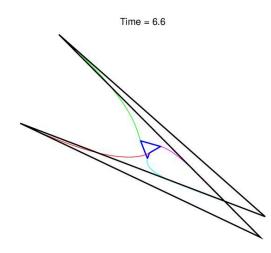


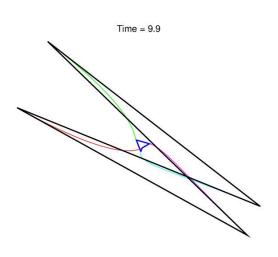


Evolution of a Non-convex Configuration

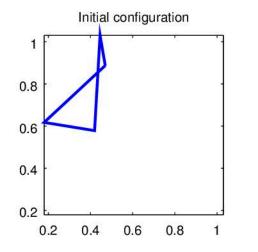


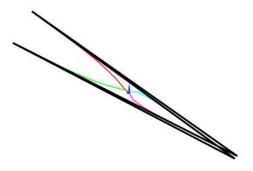


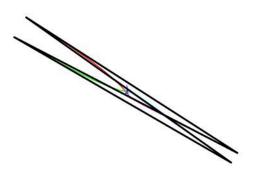


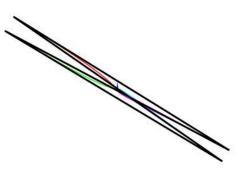


Evolution of Self-Intersecting Configuration







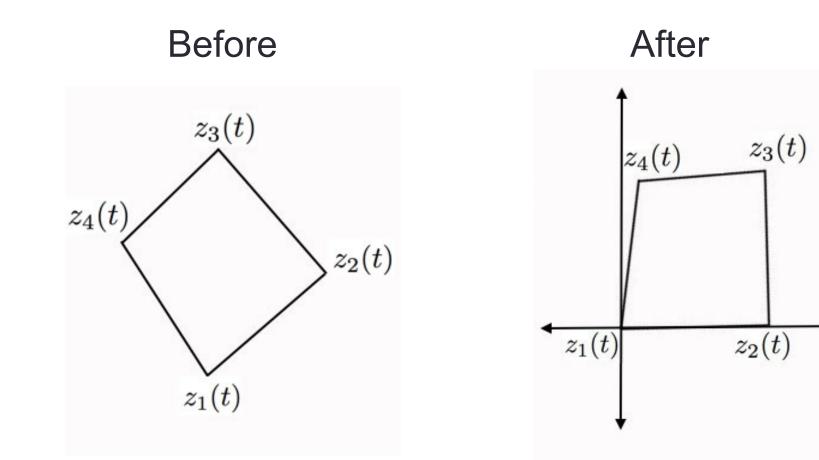


I. Linearization

Let $z_j(t) \in \mathbb{C}$, such that $t \geq 0$ and

$$z_1(t) = 0 + 0i$$

 $z_2(t) = 1 + 0i$



I. Equations of Motion

$$\begin{aligned} z_1(t+dt) &= z_1(t) + dt \frac{z_1(t) - z_2(t)}{|z_1(t) - z_2(t)|} \\ z_2(t+dt) &= z_2(t) + dt \frac{z_2(t) - z_3(t)}{|z_2(t) - z_3(t)|} \\ z_3(t+dt) &= \frac{z_3(t)}{z_2(t+dt)} + dt \frac{z_3(t) - z_4(t)}{z_2(t+dt)|z_3(t) - z_4(t)|} - \frac{z_1(t+dt)}{z_2(t+dt)} \\ z_4(t+dt) &= \frac{z_4(t)}{z_2(t+dt)} + dt \frac{z_4(t) - z_1(t)}{z_2(t+dt)|z_4(t) - z_1(t)|} - \frac{z_1(t+dt)}{z_2(t+dt)} \end{aligned}$$

II. Calculate Time Derivatives

$$\dot{z}_i(t) = \lim_{dt \to \infty} \frac{z_i(t+dt) - z_i(t)}{dt}$$

III. Compute Jacobian

$$\left(\frac{\partial \dot{x}_i}{\partial x_j}\right)_{i,j=1,\dots,4}$$

Local Analysis: Square

I. Eigenvalues

$$\lambda_1 = -i, \quad \lambda_2 = i, \quad \lambda_3 = rac{-1}{2} - rac{i\sqrt{7}}{2}, \quad \lambda_4 = rac{-1}{2} + rac{i\sqrt{7}}{2}$$

II. Eigenvectors

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\i\\-i\\1 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 1\\-i\\i\\1 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} \frac{1}{4} - \frac{i\sqrt{7}}{4}\\1\\\frac{1}{4} - \frac{i\sqrt{7}}{4}\\1 \end{bmatrix}, \quad \mathbf{v}_{4} = \begin{bmatrix} \frac{1}{4} + \frac{i\sqrt{7}}{4}\\1\\\frac{1}{4} + \frac{i\sqrt{7}}{4}\\1 \end{bmatrix}$$

Local Analysis: Line

I. Eigenvalues

$$\lambda_{1,2}=-2,\quad\lambda_3=-1-i,\quad\lambda_4=-1+i$$

II. Eigenvectors

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 0 \\ -i \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_{4} = \begin{bmatrix} 0 \\ i \\ 0 \\ 1 \end{bmatrix}$$

Local Analysis: Parallelogram

I. Eigenvalues

$$\lambda_1 = -i, \quad \lambda_2 = i, \quad \lambda_3 = rac{-1}{2} - rac{i\sqrt{7}}{2}, \quad \lambda_4 = rac{-1}{2} + rac{i\sqrt{7}}{2}$$

II. Eigenvectors

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\i\\-i\\1 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 1\\-i\\i\\1 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} \frac{1}{4} - \frac{i\sqrt{7}}{2}\\1\\\frac{1}{4} - \frac{i\sqrt{7}}{2}\\1 \end{bmatrix}, \quad \mathbf{v}_{4} = \begin{bmatrix} \frac{1}{4} + \frac{i\sqrt{7}}{2}\\0\\\frac{1}{4} + \frac{i\sqrt{7}}{2}\\0 \end{bmatrix}$$

Stability Analysis: Parallelogram

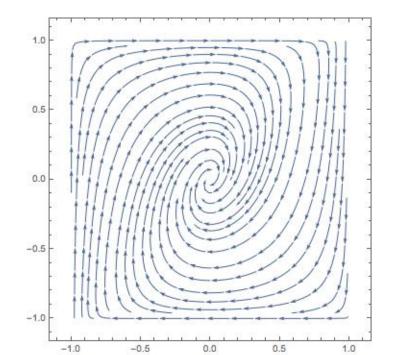
I. Change of Variables

$$x = \cos(\alpha_1) \text{ and } s = \frac{\ell_1 - \ell_2}{\ell_1 + \ell_2} \qquad \qquad \ell_2$$

II. System of ODEs
$$\frac{dx}{d\tau} = -4s \frac{1 - x^2}{1 - s^2} \text{ and } \frac{ds}{d\tau} = 2(x - s)$$

Stability Analysis: Parallelogram

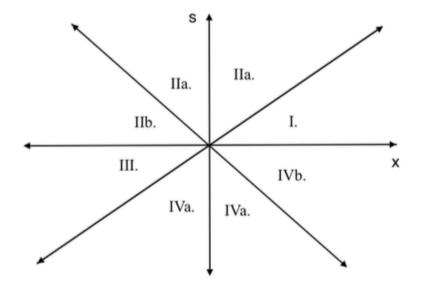
Theorem 1.2: All configurations in the plane of parallelograms converge to a square



Proof:

I. Partition Plane of Parallelogram

$$\begin{cases} \text{I.} & x > s > 0 \\ \text{IIa.} & s > 0, s > |x| \\ \text{IIb.} & s > 0, |x| > s, x < 0 \\ \text{III.} & x < s < 0 \\ \text{IVa.} & s < 0, |x| < |s| \\ \text{IVb.} & s < 0, |s| < x \end{cases}$$



Proof:

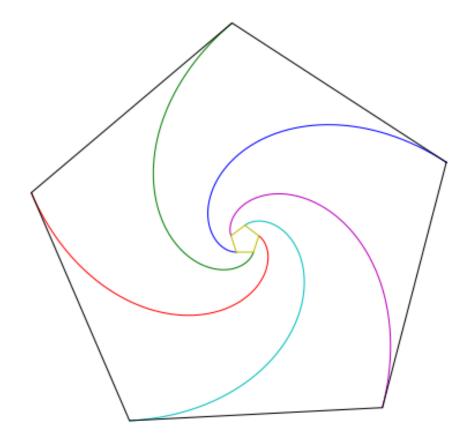
II. Bound our ODEs

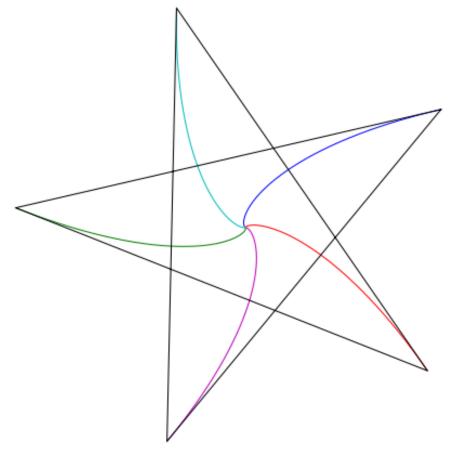
$$F_n(x,s) = egin{cases} f_n(x,s) \ 2(x-s) \end{cases}$$
 , such that $f_n(x,s) > -4s rac{1-x^2}{1-s^2}$

III. Compute Jacobian and Eigenvalues

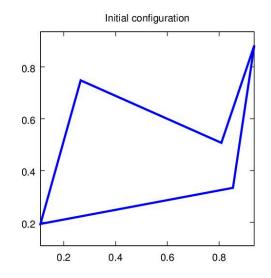
Normal Forms

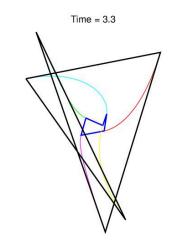
Future Work: 5 Bugs

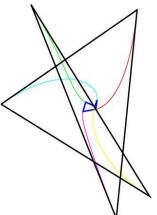


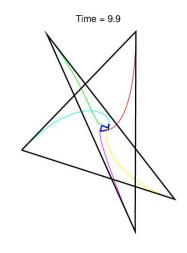


Experimentation

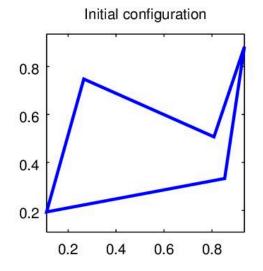




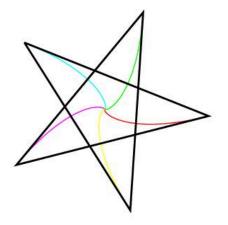




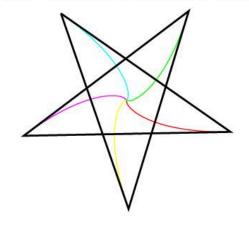
Experimentation



Time = 66000000000000855638016



Time = 330000000000000427819008



Time = 99000000000000746586112

