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Consider a kicked rotator

θ̈ = K
∑
n∈Z

δ(t − n) sin θ
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θ̈ = K
∑
n∈Z

δ(t − n) sin θ

p = θ̇ is the angular momentum.

Integrate around t = n:

θn+1 = θn + pn (mod 2π)

pn+1 = pn + K sin θn+1

This is known as the Chirikov standard map.

Boundedness of momentum is understood using KAM theory.
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Let’s replace the sine wave by a square wave and shift horizontally:

xn+1 = xn + αyn (mod 1)

yn+1 = yn + sgn

(
xn+1 −

1

2

)

We’re interested in the dynamics of this function f on the cylinder
[0, 1)× R.

KAM theory does not apply here because of the lack of
smoothness.
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f can be interpreted geometrically in several ways.

f is also related to the Fermi-Ulam model, introduced in 1961 by
Ulam as a variant of Fermi’s model of cosmic ray acceleration via
magnetic mirrors.

Understanding the dynamics of discontinuous maps of this kind
could be of interest.

Which orbits are unbounded? Why do they appear to grow slowly?
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Unbounded orbits?

A simple case occurs for α = 1:

xn+1 = xn + yn (mod 1), yn+1 = yn + sgn

(
xn+1 −

1

2

)
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We’ll restrict to α, y0 ∈ Q. Reasons: More tractable, and maybe
it’ll give insight into the case αy0 /∈ Q.

For now, consider α = 1/q and y0 = a/b.

For convenience, expand the cylinder:

x ′ = x +
y

q
(mod 1) x ′ = x + y (mod q)

y ′ = y + sgn

(
x ′ − 1

2

)
y ′ = y + sgn

(
x ′ − q

2

)

Can also define f on the torus – glue y = 0 to y = q.
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Invariant intervals (α = 1/q and y0 ∈ Z)
The action of f is the same throughout certain intervals.
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Rotational symmetry

q = 36, x0 = 18 + 3.5 = 21.5, y0 = 0
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Rotational symmetry

Red orbit: x0 = 18− 3.5 = 14.5
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Rotational symmetry
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Consider y0 ∈ Z and α = 1/q.

Proposition

Suppose q is even. For (x0, y0) ∈ L, the orbit under f is bounded.

Proposition

Suppose q is odd. Then there exists a unique escaping orbit on LR
under f , and this orbit escapes to +∞.

Tom Dauer, Meg Doucette, and Shan-Conrad Wolf Summer@ICERM 2015

Discontinuous standard map dynamics



Consider y0 ∈ Z and α = 1/q.

Proposition

Suppose q is even. For (x0, y0) ∈ L, the orbit under f is bounded.

Proposition

Suppose q is odd. Then there exists a unique escaping orbit on LR
under f , and this orbit escapes to +∞.

Tom Dauer, Meg Doucette, and Shan-Conrad Wolf Summer@ICERM 2015

Discontinuous standard map dynamics



Can we find unbounded orbits for α = 1/q and y0 ∈ Q\Z?

For q ≡ 2 (mod 4), experiments indicated that y0 = 1/2 always
works.

In fact, for q ≡ 2 (mod 4), the orbit under f of the point
(r0, y0) = (q − 3, q+1

2 ) is unbounded. (Here r = x − 3/4)

Consider points at level y = q+1
2 + m.
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30 iterates with q = 18
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Consider points at level y = q+1
2 + m.

For m even we can only have r ≡ 3 (mod 4), and for m odd only
r ≡ 2 (mod 4).

Starting at (r0, y0) = (q − 3, q+1
2 ), there are immediately two

consecutive increases.

There is no point at level y = q+1
2 + 2 from which there are two

consecutive decreases.
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Conjecture

For every α = 1/q, there exists y0 = a/b such that there is an
escaping orbit starting at some (x0, y0) ∈ LR .

We’ve shown this holds for q odd and q ≡ 2 (mod 4).

q 24 28 32 36 40 44 48 52 56 60

a 36 67 63 77 19 23 360 243 23 254

b 103 144 205 227 337 223 1043 1264 505 1379

For q ≡ 0 (mod 4), this table gives y0 = a/b with the smallest b.
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Islands at y = q/n for n odd (y0 ∈ Z again)

The escaping orbit for q = 601.
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First return map:

cm+1 = cm + ndm −
(
n − 1

2

)2

− r

dm+1 = dm − sgn(cm+1)

for all m ≥ 0, where r = q (mod n).
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Asymptotics of the escaping orbit
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L(q) > Cq log q

for some constant C > 0 and sufficiently large q.
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