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Motivation

Roomba
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Model and Definitions

Room
{Aj = [aj , bj ]× [cj , dj ]}nj=1 \ ∂A \ w
w := {w1, w2, · · · } is the set of interior walls.

  

Figure 1: Possible paths taken by the point robot
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Model and Definitions

Motion of the point robot

Horizontal move hi and Vertical Move hi
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Model and Definitions

Motion of the point robot

Horizontal move hi and Vertical Move vi.

Step: an ordered pair of moves (hi, vi).
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Model and Definitions

Definition of regions

  

Figure 2: Possible paths of robot
starting from the red circle

  

Figure 3: Definition of regions in
a typical room configuration
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Definition (Markov Chain)

A finite Markov Chain is a process which moves among the elements of
a finite set Ω so that when at x ∈ Ω, the next state is chosen according
to a fixed probability distribution P (x, ·).
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P =


1 2 3

1 0 1/2 1/2
2 0 1/3 2/3
3 1/2 0 1/2


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Definition (Transition Matrix)

The matrix P that that represents the Markov process with state space
Ω is called the transition matrix. P is stochastic. That is, for all xth

row of P , P (x, ·) satisfies: ∑
y∈Ω

P (x, y) = 1 (1)

Theorem

Every eigenvalue λ of a stochastic matrix P satisfies |λ| ≤ 1.
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Definition (Stationary Distribution)

A stationary distribution π on Ω satisfies:

π = πP (2)
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Model and Definitions

Irreducibility :

A transition matrix P is irreducible if ∀x, y ∈ Ω, there exists integer t
such that P t(x, y) > 0.
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Aperiodicity:

Period is the greatest common divisor of τ(x) := {t ≥ 1 : P t(x, x) > 0}.
A transition matrix P is aperiodic if all states have period 1.

Chang He and Shun Yang Mixing Time in Robotic Explorations August 7, 2015 14 / 61



Reversibility:

A transition matrix is reversible if it satisfies:

π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ Ω (3)
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Definition

The total variation distance (TV ) between two probability distribution
µ and υ on Ω is defined as the maximum difference between the
probabilities assigned to a single event by the two distributions:

||µ− υ||TV = max
A⊂Ω
|µ(A)− υ(A)| (4)
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Model and Definitions

Theorem (Convergence Theorem)

Suppose that P is irreducible and aperiodic, with stationary distribution
π. For all t, there exists constants α ∈ (0, 1) and C > 0 such that:

max
x∈Ω
||P t(x, ·)− π||TV ≤ Cα

t (5)
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Model and Definitions

Definition (Mixing Time)

Let d(t) := max
x∈Ω
||P t(x, ·)− π||TV , then the mixing time tmix is defined

by:

tmix(δ) := min{t : d(t) ≤ δ} (6)

Choose δ = 1/100, and

tmix := tmix(1/100)
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A Simple Room

Ɛ

Figure 4: A simple Room

[�
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Figure 5: Labeled regions
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A Simple Room

[�

[� [�

[�

P =


x1 x2 x3 x4

x1 1− ε 0 ε 0
x2 0 1− ε 0 ε
x3

1
2(1− ε) 1

2(1− ε) 1
2ε

1
2ε

x4
1
2(1− ε) 1

2(1− ε) 1
2ε

1
2ε

.
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A Simple Room

Relaxation time trel

P is a reversible and stochastic, so we can label its eigenvalues in
descending order:

1 = |λ1| > |λ2| ≥ · · · ≥ |λ|Ω|| ≥ −1 (7)

Spectral gap of P is γ := 1− |λ2|

Definition (Relexation Time)

The relaxation time trel of P with spectral gap γ is defined as:

trel :=
1

γ
(8)

Chang He and Shun Yang Mixing Time in Robotic Explorations August 7, 2015 22 / 61



A Simple Room

Relaxation time trel

P is a reversible and stochastic, so we can label its eigenvalues in
descending order:

1 = |λ1| > |λ2| ≥ · · · ≥ |λ|Ω|| ≥ −1 (7)

Spectral gap of P is γ := 1− |λ2|

Definition (Relexation Time)

The relaxation time trel of P with spectral gap γ is defined as:

trel :=
1

γ
(8)

Chang He and Shun Yang Mixing Time in Robotic Explorations August 7, 2015 22 / 61



A Simple Room

Relaxation time trel

P is a reversible and stochastic, so we can label its eigenvalues in
descending order:

1 = |λ1| > |λ2| ≥ · · · ≥ |λ|Ω|| ≥ −1 (7)

Spectral gap of P is γ := 1− |λ2|

Definition (Relexation Time)

The relaxation time trel of P with spectral gap γ is defined as:

trel :=
1

γ
(8)

Chang He and Shun Yang Mixing Time in Robotic Explorations August 7, 2015 22 / 61



A Simple Room

Relation between tmix and trel:

Theorem

Let πmin := minx∈Ω π(x). For a reversible, irreducible and aperiodic
Markov chain with state space Ω , the relation between its relaxation
time trel and πmin can be represented as:

log(
1

δπmin
)trel ≥ tmix(δ) ≥ (trel − 1) log(

1

2δ
) (9)

Therefore, tmix and trel are on the same order.
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A Simple Room

Computation Results: |λ2| = 1− ε
tmix = 1/γ = 1/(1− ε) = Θ(1

ε ).

P =


x1 x2 x3 x4

x1 1− ε 0 ε 0
x2 0 1− ε 0 ε
x3

1
2(1− ε) 1

2(1− ε) 1
2ε

1
2ε

x4
1
2(1− ε) 1

2(1− ε) 1
2ε

1
2ε

.
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Computation Results: |λ2| = 1− ε
tmix = 1/γ = 1/(1− ε) = Θ(1

ε ).

Simulation Results:

Student Version of MATLAB

Figure 6: Simulation Results
n = 100 and ε = 0.001

Student Version of MATLAB

Figure 7: Simulation Results
n = 1000 and ε = 0.001
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Proposition

Horizontal (vertical) scaling does not change tmix.

Definition (Bottleneck Ratio)

After scaling the room to unit dimensions, we define the length of the
smallest horizontal (vertical) gap as ε, which is also the bottleneck
ratio.
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Comb Room

[� [� [� [� [� [�

[� [� [� [�� [�� [��

Figure 8: A ”Comb” Shape Room With N = 6
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Comb Room: Matrix Approach

P =

(
P11 P12

P21 P22

)
P11 = (1− ε)I,
P12 = εI,
P21 = 1−ε

N
J

P22 = ε
N
J.

I is the N ×N identity matrix,
and J is the N ×N matrix with all entries being one.
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Comb Room

[� [� [� [� [� [�

[� [� [� [�� [�� [��

|λ2| = 1− ε
tmix = Θ(1/ε)
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Snake Room (ouroboric)

x1

x2

x3 x4

x6

x5

x7

x8

x9 x10

x11

x12 x13

x14

x15 x16

x17

x18

Figure 9: An Ouroboric Snake Shape Room With N = 6
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Ouroboric Snake

Figure 10: An Ouroboric Snake
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Circulant Matrix for ouroboric Snake Room

x1

x2

x3 x4

x6

x5

x7

x8

x9 x10

x11

x12 x13

x14

x15 x16

x17

x18


x3n−5 x3n−4 x3n−3 x3n−2 x3n−1 x3n x3n+1 x3n+2 x3n+3

x3n−2
ε

2

1− 2ε

2

ε

2

ε

2

1− 2ε

2

ε

2
x3n−1 ε 1− 2ε ε

x3n
ε

2

1− 2ε

2

ε

2

ε

2

1− 2ε

2

ε

2


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The kth eigenvectors rk has the form:

rk =



a

b

c

ae2πik/N

be−2πik/N

ce−2πik/N

...
ae−2πik(N−1)/N

be−2πik(N−1)/N

ce−2πik(N−1)/N


where k = 0, 1, 2, · · · , N − 1 and a, b, c are three constants depending on N

and k.

λ

 a

b

c

 =

 ε/2(1 + e
2πik
N ) (1/2− ε)(1 + e

2πik
N ) ε/2(1 + e

2πik
N )

ε 1− 2ε ε

ε/2(1 + e
−2πik
N ) (1/2− ε)(1 + e

−2πik
N ) ε/2(1 + e

−2πik
N )


 a

b

c


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Trace:1− ε+ ε cos(2πk
N )

When k = 1,

tmix =
1

ε(1− cos(2πk
N ))

≈ N2

2π2ε

which is of Θ(N2/ε).
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Non-ouroboric Snake

Shape

Figure 11: non-ouroboric snake shape
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Non-ouroboric Snake

Coupling Method

Definitions

Definition (Coupling of Markov Chains)

A coupling of Markov chains with transition matrix P is a process (Xt, Yt)
∞
t=0

with the property that both (Xt) and (Yt) are Markov chains with transition
matrix P , although the two chains may have different starting distribution.

Definition (tcoup)

The coupling time tcoup := min{t : Xt = Yt}
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Non-ouroboric Snake

Coupling Method
How to bound tmix

Theorem

Suppose that for each pair of states x, y ∈ Ω there is a coupling (Xt, Yt) with
X0 = x and Y0 = y. Then, for each such coupling,

d(t) ≤ max
x,y∈Ω

Px,y{tcoup > t} (10)

Theorem (Markov’s Inequality)

If X is any nonnegative random variable and a > 0, then

P(X ≥ a) ≤ E(X)

a
. (11)

Corollary

tmix ≤ 100Ex,y(tcoup) (12)
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Non-ouroboric Snake

Coupling Method

Design a coupling

Definition (Specific coupling design for this case)

For any two points x, y, at each step, let x move first and then y move. At
each step, y always moves to the same vertical height as x. If x and y are in
the same chamber, then y also moves to the same horizontal location as x.

Theorem (Observation)

Ex,y(tcoup), in this case, is bounded above by the expected time for one point
to move from the first chamber to the last chamber.
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Non-ouroboric Snake

Redefine States

Figure 12: Simplified States

Chang He and Shun Yang Mixing Time in Robotic Explorations August 7, 2015 40 / 61



Non-ouroboric Snake

Random Walk On A Graph

X2 X5 X3 X4 X1 ε/2 ε/2 ε/2 ε/2 

1-ε/2 1-ε 1-ε 1-ε 1-ε 

X6 ε/2 

1-ε/2 

Figure 13: Simplified Random Walk On A Graph
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Non-ouroboric Snake

Solve expected time from x1 to xN : If we denote the expected time
of moving from the nth chamber to the last chamber (the N th) as
T (n), then we would easily obtain a following recurrence relation:

T (n+ 1)− 2T (n) + T (n− 1) + 1/ε = 0 (13)

with boundary conditions:

T (0) = T (1) + 2/ε, T (N) = 0 (14)
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Non-ouroboric Snake

Bound mixing time tmix: After solving this relation, we find that

T (n) = −3n

2ε
− n2

2ε
+

3N

2ε
+
N2

2ε
(15)

Therefore we would have
tmix ≤ 100 · E(tcoup) ≤ 100 · T (0) = 150N

ε + 50N2

ε . Therefore, we
know that the mixing time tmix in this case is also bounded above
by O(N

2

ε ).
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A Lego Room

Definition

A room is a n-Lego room if and only if it consists of n unit chambers
and each chamber is connected to at least one other chamber. The
walls between any two connected chamber is of length 1− ε.

X1

X2

X3

X4

X5

Figure 14: An Example of 5-Lego Room
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A Lego Room

Random Walk

ε/2 

ε/2 

ε/3 

ε/3 

ε/3 

X1 

X2 

X3
 

X4 

X5 

Figure 15: The Equivalent Random Walk On a Graph

Chang He and Shun Yang Mixing Time in Robotic Explorations August 7, 2015 45 / 61



A Lego Room

Theorem (The Wall Theorem)

The mixing time tmix for a room increases when the length of one wall
is extended and decreases when it is shortened.

Corollary (Special Case Of The Wall Theorem)

For any random walk on a graph G, if the probability between state i
and state j is decreased (the probability of staying in i and j is
increased), then the mixing time tmix for this process increases. If such
probability is increased, then tmix decreases.
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A Lego Room

Transformation by the previous Corollary:

ε/2 

ε/2 

ε/3 

ε/3 

ε/3 

X1 

X2 

X3
 

X4 

X5 

ε/2 

ε/2 

ε/2 

ε/2 

ε/2 

X1 

X2 

X3
 

X4 

X5 

tmixdecreases 

Figure 16: A transformation that decreases mixing time
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A Lego Room

Transformation by TWT and its Corollary:

ε/2 

ε/2 

ε/3 

ε/3 

ε/3 

X1 

X2 

X3
 

X4 

X5 

ε/4 

ε/4 

ε/4 

ε/4 

X1 

X2 

X3
 

X4 

X5 

tmixincreases 

Figure 17: A transformation that increases mixing time
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A Lego Room

Definition

A red random walk on a graph G is a random walk such that the
probability from any vertex i to vertex j of G (in one step) is either 0
or qε, where q is a constant for this walk.

ε/2 

ε/2 

ε/2 

ε/2 

ε/2 

X1 

X2 

X3
 

X4 

X5 

Figure 18: Transformation 1

ε/4 

ε/4 

ε/4 

ε/4 

X1 

X2 

X3
 

X4 

X5 

Figure 19: Transformation 2

Chang He and Shun Yang Mixing Time in Robotic Explorations August 7, 2015 49 / 61



A Lego Room

Definition (Laplacian Matrix)

Let G = (V,E) be a non-directed finite graph. Let V be the set of
vertices and |V | = N . Then after choosing a fixed ordering
w1, w2, ..., wN of the set V , the Laplacian matrix is the N by N matrix
A(G) whose diagonal entries aii being the valencies of vertex i and off
diagonal entries aij = aji = −1 if vertex i and j are connected and 0
otherwise.

Definition (Algebraic Connectivity)

Let n ≥ 2 and 0 ≤ λ1 ≤ λ2 = a(G) ≤ λ3 ≤ · · · ≤ λn be the eigenvalues
of the matrix A(G). The algebraic connectivity of the graph G is the
second smallest eigenvalue a(G).
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A Lego Room

Theorem (Fiedler, 1973)

Denote e(G) as the edge connectivity of a connected graph G, which is
the minimal number of edges whose removal would result in losing
connectivity of the graph G. Then for any G, we have

N ≥ a(G) ≥ e(G)(1− cos(π/N)) (16)

Notice that the second largest eigenvalue of transition matrix P for a
red random walk on G is λ2 = 1− qεa(G).

Theorem (Mixing Time for A Lego Room)

If a room is a N -Lego room, then the mixing time tmix for this room is
bounded below from O( 1

Nε) and bounded above by O(N
2

ε ).
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A General Room

Figure 20: A Room Figure 21: Adding Walls
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A General Room

Lemma

For any room, the number of states is on the order of O(s), where s is
the number of sides.

Lemma

The probability between any two connected states is bigger than or equal
to ε.

Then by TWT, we can decrease the probability from any state i to any
other state j to ε with tmix increasing. Therefore, tmix for the original
room is bounded by tmix for a red random walk.

Theorem

For any room with s many number of sides and ε bottleneck ratio, the
mixing time tmix is bounded above by O( s

2

ε )
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Tilted Tunnel

Shape

ɑ u

v

Figure 22: A Tilted Tunnel
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Tilted Tunnel

(s,h) 

α 

ε 

Figure 23: A Tilted Tunnel

Pρ(s, h, t) = ρ(s, h, t+ 1) =
1

B

∫∫
DB

ρ(u, r, t)dudr (17)

ρ(s, h, t+ 1) =

∞∑
k=0

ak(t+ 1)e2πiks/L =
1

B

∫∫
DB

ρ(u, r, t)dudr

=
1

B

∫∫
DB

∞∑
k=0

ak(t)e
2πiku/Ldudr =

1

B

∞∑
k=0

∫∫
DB

ak(t)e
2πiku/Ldudr
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Tilted Tunnel

ak(t+ 1)e2πiks/L =
1

B

∫∫
DB

ak(t)e
2πiku/Ldudr (18)

ak(t+ 1) =
L2 sin2(2α)

4ε2k2π2
sin(

2εkπ

L sin(2α)
)ak(t) = Φ(k)ak(t) (19)

where Φ(k) is the eigenvalues in this case. When k = 1, such value is
the second largest.

Theorem (Mixing Time For Tilted Tunnel)

For a Tunnel of length L and width ε, where ε� L, the mixing time

tmix is on the order of O( sin2(2α)L2

ε2
)
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Bent Tunnel

Conjecture

For any bent tunnel L with width ε, where ε� L, we denote α(s) as
the angle of the tunnel with horizontal axis at point s. Then

trel =
3

4π2ε2
(

∫
L
| sin(2α(s))|ds)2 (20)

Experimentation:

Figure 24: An Example Figure 25: Discretization
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Bent Tunnel

Some data: 90 by 90 pixels discretization

Figure 26: Expected Result to Discretizated Result
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