
Summer@ICERM 2016 Projects

Focus of the program: The sample problems listed below center around modelling, analysis, and computa-

tional aspects of pattern formation in spatially extended systems. The projects involve tools from dynamical

systems, numerical methods (including rigorous computations), and probability. Most of the references listed

below can be accessed from http://www.dam.brown.edu/people/sandsted/publications.php.

1 Agent-based modelling of pattern-forming processes

Stripe formation in zebrafish: During their early development, zebrafish develop stripes formed of

several types of colored pigment cells. Recent modelling efforts using agent-based models for the differenti-

ation, movement, and death of a discrete population of pigment cells on the fish body have led to improved

understanding of the mechanisms behind stripe formation in wild-type and mutant zebrafish. Stripes also

form on the fins of zebrafish: the mechanism seems to differ from that on the main body and appears to

involve movement of certain pigment cells along the bones of the fins. This project will focus on modelling

pattern formation in fins using a combination of deterministic and stochastic equations for cells, parameter

estimation from experiments, and numerical simulations of the resulting models. Reference: [13]

Localization of mRNA in frog oocytes: Establishing spatial directionality is an important part of the

early development of all organisms. In Xenopus, directionality is achieved by localization of mRNA, first at

the nucleus and then at the vegetal cortex. The process of moving mRNA cargo from the nucleus to the

vegetal cortex involves several kinds of molecular motors, but their precise role and the role of anchoring of

mRNA to the cortex is not well understood. This project would extend recent agent-based one-dimensional

models to planar models that involve transport along complex networks of microtubules. Reference: [9]

Stationary distributions for chains of agents with birth and death: Agent-based models of cells

typically involve (1) deterministic differential equations that govern their interactions and movement and

(2) a stochastic component that governs cell birth and death. In particular, the number of cells varies

stochastically due to birth and death processes. An interesting question is then to analyse when, and in

what sense, the system reaches a stable equilibrium (which could be given by a stationary distribution of

the underlying stochastic process). Using a combination of analytical and numerical techniques, this project

will investigate a one-dimensional model for the interaction of particles that repel each other and analyse

under what conditions on the repulsive force and the rate of birth/death a stationary distribution exists.

Propagation of lead in mammals: There exists a well-known linear 3-compartment ODE model ODE

which describes the propagation of lead in mammals after ingestion. The 3 compartments are blood, tissue,

and bone. The model implicitly assumes that the transfer rates between compartments are fixed; in particu-

lar, they do not depend upon the amount of lead in a given compartment. Using experimentally determined

values for the transfer rates, and assuming that the ingestion rate is constant, the model predicts that after

ingestion most of the lead in the body will be in the bones. The goal of the project will be to extend the

model in several different directions, and to see if, and how, the various extensions effect this prediction. For

example, what happens if

• the ingestion rates between compartments depends upon the amount of lead in a given compartment?

• a compartment, e.g., tissue, is assumed to have several sub-compartments, e.g., muscle, neural tissue,

digestive, etc., each with its own transfer rate?
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• the ingestion rate is not constant; in particular, suppose it is stochastic in some sense?

• the transfer rates depend upon age?

The goal of this project is to answer as these questions - and, perhaps more! - using a combination of analysis

and numerical studies. References are: [5, 11]

2 Snaking in the Swift–Hohenberg equation

The Swift–Hohenberg equation

ut = −(1 + ∆)2u− µu+ νu2 − u3, x ∈ Rd, d = 1, 2

is a paradigm of pattern-forming systems. It exhibits planar roll or stripe patterns, domain-filling hexagon

patterns, and a variety of localized patterns that resemble localized patches of rolls or hexagons. For the

one-dimensional Swift–Hohenberg equation, it is known that stable localized roll patterns of different ex-

tent can coexist at the same parameter values: all these structures lie on the same bifurcation curves that

”snake” back and forth in parameter space as the roll plateaus increase in length (see figure below) [1, 2, 4].

In addition, fully localized patterns, so-called spots, exist for the planar Swift–Hohenberg equation.
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fully localized patterns, so-called spots, exist for the planar Swift–Hohenberg equation.
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Fig. 1. The center panel contains the bifurcation diagramof 1D localized pulses. The
symmetric profiles that correspond to parameters on the light-colored curve have a
maximum at r = 0 as shown in panels (1), (2), and (5), while the symmetric profiles
corresponding to the dark-colored branch have a minimum at r = 0 as illustrated
in panel (3). As we move up on each branch, a pair of new rolls is added to the
solution profile at every other fold bifurcation. The twodifferent branches discussed
above are connected by ladder branches that correspond to asymmetric profiles
as indicated in panels (3)–(5). These asymmetric structures bifurcate at pitchfork
bifurcations near each fold from the symmetric pulses.

In one space dimension, these radial profiles resemble stable rolls
with a localized envelope superimposed on them as illustrated in
Fig. 1, so they can be thought of as localized rolls. In the planar
case, the radial profiles thatwe are interested in appear as localized
target patterns; see Fig. 2. We now summarize some of the known
results about localized radial structures in dimension n = 1, 2, 3
for µ > 0.

When n = 1, Eq. (1.2) is reversible and Hamiltonian, and
much is knownabout localized radial patterns and their bifurcation
diagrams [13,14,10,15–18]. Localized roll structures, which we
refer to as pulses, exist for ⌫ > ⌫⇤. Symmetric pulses that are
invariant under x 7! �x snake: their bifurcation branch, obtained
by plotting the width of the roll plateau as measured by their
L2x-norm against the parameter µ, resembles a vertical sinusoidal
curve; see Fig. 1. As we move up along the branch, pulses broaden
as new rolls are added on either end at every other fold. As shown
in Fig. 1, there are two branches of symmetric pulses with either
a positive maximum or a negative minimum at x = 0, and
these branches are connected by horizontal ladder branches that
correspond to asymmetric localized roll patterns. Among the other
known solutions are symmetric 2-pulses,which are bound states of
two individualwell-separated localized roll structures. Two-pulses
exist along figure-of-eight isolas that lie inside the regions formed
by two consecutive ladder branches and the two snaking curves
that connect them [19,20]. More precisely, symmetric 2-pulses
exist along a two-parameter family of isolas that are parametrized
by (s, `), where ` 2 N denotes the number of rolls in each of the
two individual localized roll structures that make up the 2-pulse,
and s 2 N is the number of small-amplitude oscillations near u = 0
in between the two individual pulses [21]. Thus, s can be thought
of as a measure of the separation width, while ` represents the
L2x-norm of the 2-pulse. In particular, a countably infinite number
of 2-pulses are expected to exist for each fixed value of their L2x-
norm, and these 2-pulses are distinguished from each other by the
increasing separation distance between the two individual pulses.

In two dimensions, several different kinds of localized radial
patterns were recently found in [22]. First, for each ⌫ > 0, spots
bifurcate from µ = 0 into µ > 0. As illustrated in Fig. 2, these
spots resemble J0 Bessel functions near r = 0, and they have an
initial amplitude of order

p
µ for small µ. From now on, we refer

to these structures as spot A solutions. In addition to these spots,
two ring solutions emerge fromµ = 0 for each fixed ⌫ > ⌫⇤. These
solutions have an overall sech-like shapewith amaximumof orderp

µ that occurs at r ' 1/
p

µ. For ⌫ > ⌫⇤, spot A and the two rings

appear to snake, as can be seen in Fig. 2. All of these solutions were
proved to exist for 0 < µ ⌧ 1 in [22].

In three dimensions, numerical evidence for the existence
of spots was presented in [22]; their existence near onset was
recently proved in [23]. In contrast to the planar case, 3D spots
do not appear to snake: instead, the L2r -norm along branches of
localized spots stays bounded.

Our goal in this paper is to understand the change in the
behavior of spots and rings when the dimension switches from
2 to 3, and to investigate how the 1D, 2D, and 3D structures
described above are related to each other. To elucidate the different
behaviors of profiles and branches as n varies, we treat n as a
continuous parameter and use numerical continuation techniques
to follow spots and rings from n = 2 upwards to n = 3 and
downwards to n = 1. In particular, the focus of this paper is on
numerical computations, though we will outline some possible
avenues for analysis and rigorous proofs in Section 6. We now
briefly summarize our results.

First, we discovered a second family of planar 2D spots, from
now on referred to as spot B, which seem to exist only for ⌫ > ⌫⇤.
In contrast to the spot A structures, spot B solutions have a negative
minimum at r = 0 as shown in Fig. 3. In addition, their amplitude
appears to scale likeµ

3
8 , so |u(0)| ⇠ µ

3
8 asµ ! 0, and these spots

are therefore not captured by the µ
1
2 -scaling used in the analysis

of spot A solutions in [22].
Second, when we follow spots A and B and the two ring

structures down in dimension to n = 1, we find that spots
A and B become, respectively, the symmetric 1D pulses with a
maximum and a minimum at r = 0 that we discussed above.
The two rings, however, turn into symmetric 1D 2-pulses. Recall
that symmetric 2-pulses exist along a two-parameter family of
isolas, and the mechanism for the production of isolated branches
from two connected ring snaking curves turns out to be quite
complicated. Our numerical continuation results show that each
ring curve folds over onto itself several times in a complicated
manner and then pinches off a number of 2-pulse isolas. On the
other hand, we also found 2-pulse isolas that are not connected to
the ring branches upon increasing n but instead shrink to a point
and disappear.

Our third result concerns the snaking structure of spots A and B
for 2  n  3, which turns out to be equally complicated. Recall
that indefinite snaking was predicted in [22] from the numerical
computations presented there. It turns out that the computations
in [22] were stopped at a value of the L2r -norm that was not large
enough to reveal the more complicated bifurcation structure that
we report on here. Indeed, as we follow spot A up on its bifurcation
curve, the curve eventually turns around, and the L2r -norm of the
spots begins to decrease again. At this point, the profile of the
underlying pattern transforms from a spot to the profile of one of
the two rings. Similarly, spot B broadens for awhile, but eventually
transforms into the second ring and follows the ring bifurcation
curve downwards towards decreasing L2r -norm. In particular, spots
and rings are pairwise connected in parameter space. Above these
two connected curves lies a family of stacked isolas of localized
structures,which also terminates for a large enough value of the L2r -
norm. Above these stacked isolas, we found a connected U-shaped
solution curve that seems to extend up to infinite L2r -norm. Both of
the branches of this curve snake and the associated profiles cycle
through spot A and B solutions. These branches seem to continue
indefinitely towards increasing L2r -norm, but the width of the
snaking regions in the µ-direction decreases. We also gain insight
into how the snaking curves above and below the isolas depend on
the parameter µ and will discuss this further in Section 3.

The paper proceeds as follows. Section 2 describes the
numerical techniques used. Section 3 details the bifurcation
structures for n = 2. In Section 4, the changes of the bifurcation

From localized to target patters: Numerical experiments show that localized spots can turn into

nonlocalized ”target” patterns as the parameter µ crosses through zero. It would be interesting to use

geometric blow-up techniques complemented by rigorous numerical computations to prove that this novel

transition occurs in the radial Swift–Hohenberg equation.

From dimension 1 to 1 + ✏: It is known that the bifurcation diagrams of the one-dimensional and the

planar Swift–Hohenberg equation are very di↵erent: the 1D equation exhibits snaking, while the bifurcation

diagram for the 2d equation consists of infinitely many disconnected isolas. Numerical simulation indicate

that the transition from connected to disconnected curves occurs when one goes from dimension n = 1 to

n = 1 + ✏ for the radial equation
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u � µu + ⌫u2 � u3, r � 0. (1)

The reason seems to be that drift along the cylinder of periodic orbits that exists for n = 1 is induced

as soon as n > 1. The project would involve analysing this behavior using a combination of analytical

dynamical-systems techniques for the vector field on the cylinder complemented by numerical simulations.

Snaking for non-orientable Floquet bundles: The mathematical theories that were developed to

explain the snaking diagram in the figure above all assume that the Floquet bundles along the roll patterns

are topologically trivial. It is not clear how the bifurcation diagrams would change for non-orientable Floquet

bundles. It would be interesting to analyse this case using, as in the orientable case, dynamical-systems

techniques to solve equation (1).

Emergence of localized defects inside roll patterns: The patterns discussed so far resemble localized

patches of one-dimensional and planar roll or strip patterns. It is also possible to generate localized defects

inside a roll pattern. Numerical computations indicate that such structures can emerge at fold bifurcations of

roll patterns. Analysing this bifurcation using spatial dynamics would be a very interesting project amenable

to undergraduates.
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From localized to target patters: Numerical experiments show that localized spots can turn into

nonlocalized ”target” patterns as the parameter µ crosses through zero. It would be interesting to use

geometric blow-up techniques complemented by rigorous numerical computations to prove that this novel

transition occurs in the radial Swift–Hohenberg equation. Reference: [8]

From dimension 1 to 1 + ε: It is known that the bifurcation diagrams of the one-dimensional and the

planar Swift–Hohenberg equation are very different: the 1D equation exhibits snaking, while the bifurcation

diagram for the 2d equation consists of infinitely many disconnected isolas. Numerical simulation indicate

that the transition from connected to disconnected curves occurs when one goes from dimension n = 1 to

n = 1 + ε for the radial equation
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u− µu+ νu2 − u3, r ≥ 0. (1)

The reason seems to be that drift along the cylinder of periodic orbits that exists for n = 1 is induced

as soon as n > 1. The project would involve analysing this behavior using a combination of analytical

dynamical-systems techniques for the vector field on the cylinder complemented by numerical simulations.

Reference: [7]
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Snaking for non-orientable Floquet bundles: The mathematical theories that were developed to

explain the snaking diagram in the figure above all assume that the Floquet bundles along the roll patterns

are topologically trivial. It is not clear how the bifurcation diagrams would change for non-orientable Floquet

bundles. It would be interesting to analyse this case using, as in the orientable case, dynamical-systems

techniques to solve equation (1). Reference: [2]

Emergence of localized defects inside roll patterns: The patterns discussed so far resemble localized

patches of one-dimensional and planar roll or strip patterns. It is also possible to generate localized defects

inside a roll pattern. Numerical computations indicate that such structures can emerge at fold bifurcations of

roll patterns. Analysing this bifurcation using spatial dynamics would be a very interesting project amenable

to undergraduates. References: [3, 4]

3 Patterns in planar systems

Low-frequency forcing of planar spiral waves: Spiral waves play an important role in sustaining

certain cardiac arrhythmias such as tachycardia. In damaged cardiac tissue, pacemaker waves can get stuck

and evolve into spiral waves that excite cardiac muscle cells with a much higher temporal frequency, thus

potentially leading to fibrillation. Recent experiments have shown that low-energy far-field pacing can, for

appropriate frequencies, remove spiral waves from inhomogeneous damaged tissue. The precise theoretical

underpinnings for this mechanism are not known: this project would involve using theoretical and numerical

approaches to study simpler toy problems that could help shed light on why far-field pacing is successful. A

related problem that is of interest to diagnose tachycardia is the converse: which types of external forcing

can lead to the emergence of spiral waves (presumably near damaged tissue that could be identified in this

fashion and then ablated in surgery). Reference: [6]

Bifurcations of sources at Turing–Hopf bifurcations: Turing–Hopf bifurcations arise when a spatially

homogeneous rest state becomes, at the same time, unstable to perturbations that are spatially periodic (but

stationary in time) or time-periodic (but homogeneous in space). This opens up the possibility of creating

patterns that are time-periodic and have a spatially periodic plateau in the center: such patterns have been

observed in a number of experiments, including in Belousov–Zhabotinsky reactions. The goal of this project

is to find these patterns analytically and to carry out a numerical study of their existence and stability

properties. References: [10, 12]
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