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TAs: Quang-Nhat Le and Joshua Ruiter

1 Introduction

Ideas that challenge the status quo either evaporate or dominate.
The literature that mathematically studies the evolution of ideas
treats space as uniform and considers individuals in an isolated
community, using an ODE model. We extend these models to
include multiple communities and their interaction by using a di-
rected weighted graph. We study in detail some special cases, state
general properties, and indicate pathways for further research.
We propose a novel approach in which we account for both local
and non-local interactions. We use the model in [1], whose behav-
ior is well understood [2], to understand local interactions, while
non-local interactions are governed via a weighted, directed graph.
Our model resembles Masuda 2015 [3], in which laws of motion for
the probabilities of each individual holding an opinion are derived.
However, following Marvel et al. 2012 [1], we use a 3-state model of
opinion formation. Further, using this 3-state approach, we address
the stability of the system when it exhibits plurality.

2 The One City Model

Here on, we will refer to these communities as cities. The model
presented in [1] is a special case of our model in which there is only

one city. Here is an overview of this one city case from which we
will build our generalization. The model is driven by dyadic (pair-
wise) interactions between individuals who can hold opinions A, B,
or a moderate AB. Additionally, there are committed populations,
P of believers of A and Q of believers of B who do not change
their opinions. The result of these interactions is governed by the
following set of rules:

Speaker Listener - Preinteraction Listener - Postineraction
A,P B AB

AB A

B,Q A AB

AB B

Table 1: Rules of interactions

Here, a represents the population proportion of A, likewise b for
B, p is the proportion of P , q the proportion of Q. Note that,
m = 1 � a � b � p � q is the number of moderates, i.e. the popu-
lation proportion of those holding opinion AB in the system. We
then have the following laws of motion that govern the system, in
which the overdot represents di↵erentiation in respect to time

ȧ = m(p+ a)� a(b+ q)

ḃ = m(b+ q)� b(p+ a)

Figure 1: A bifurcation diagram of the system, when varying total
zealot population on the x-axis. The solid lines represent stable
fixed points, while the dashed lines represent unstable ones.

0 0.1 0.2 0.3 0.4 0.5

B zealots

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
 z

e
a

lo
ts

0  All B

0.25

0.5

0.75

1  All A

Figure 2: Phase diagram of p vs. q, the figure shows the result
of a random initial condition by simulating the system forward in
time. The resulting diagram plots the A population (both zealots
and non-zealots). Figure 1 corresponds to the line p = q
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3 The Multi-City Model
The idea is that the influence of any opinion on the people in one
community is the weighted average of the influence from every other
community and the community on itself. Imagine this weight is
encoded by the edge on a graph and the adjacency matrix to this
graph is a stochastic matrix. For a community k, we can represent
the equations (and interactions with other “j” communities) with
the following model:
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We can write these in matrix notation. In this form the ODEs
manifest nonlinearity via a matrix-vector multiplication.

4 The Two-City Case
When investigating the two-city case, we seek to find conditions
that evoke plurality. We define plurality as when no opinion is
held by 50% or more of the population. Through this analysis
we determined that the presence of committed believers does not
cause the population to all hold the same opinion but actually cre-
ates plurality and allows for coexistence of opinions. Conclusively,
committed believers surprisingly act as a moderating force.

Figure 3: The layout of this scenario is equal populations of A and B commit-

ted believers in city 1 and no committed believers in city 2. This graph depicts

the nature of behavior of city 1. Each curve represents a di↵erent committed

believer population. It is clear that as you increase the committed believer

population, the ability for the city to reach a pluralistic state increases.

5 Cities on a Cycle
Take a cycle graph. This system is governed by a simple law of
motion. The influence factors are denoted i

c

and i

N

where i

c

is a
node’s self influence and i

N

if the influence a node exerts on their
neighbor.

i

N

i

N

i

N

i

N

i

c

i

c

i

c

Ȯ
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6 A Cycle Graph With A Hub
A large volume of the literature considers the idea of a dominant
voice, like a media, or political figure who is ubiquitous, to whom
space does not matter [4, 5, 6, 7]. We introduce this to the cycle
graph example by adding a new node, the hub, not on the circular
graph but connected to every node on the graph.
The law of motion for this new system takes the following form,
where c and h subscripts denote the variables belonging to either
the cycle or the hub. If you assume that each node on the cy-
cle is identical, then the collection of nodes on the cycle act then
as a single node. This is identically the 2-city case. Note that
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Figure 4: Perturbations around the 1/3 fixed point on the cycle,
no hub.

Figure 5: Perturbations on the cycle around the unstable 1/3 fixed
point, with hub projecting opinion A.
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Propagation of Lead in Mammals

Melissa Morrissey and Jordan Collignon, Advisor : Todd Kapitula, TA : Veronica Ciocanel

ICERM : The Institute for Computational and Experimental Research in Mathematics

Lead is ingested into the body in various ways including contaminated air, water, food, soil, and

other consumer products [6]. After ingestion, blood takes the lead into the body and then transports

it to other tissues and the bones [3]. High amounts of lead released back into the blood can cause

lead poisoning which can increase the risk of symptoms such as fatigue, muscle pain, impaired

kidney function and inhibited central nervous system [2]. Lead absorption in the skeletal system

can also impede bone growth and make the bones brittle. The lead accumulates and can stay in

the bone for decades [7].

Blood
xA

Cortical Bone
xB

Trabecular Bone
xC

Tissue/Other

kC,AkB,A

kA,B

kA,0

I

kA,C

Figure 1: Three-compartment model for dynamics of lead in the body. The I value represents the

unknown ingestion rate of lead entering the body and the k values are constants extracted from

data in [1].

Using the three-compartment model in figure 1, we considered three di↵erential equations for the

dynamics of lead in the body. It was crucial to make the bones into two separate compartments

because the tougher cortical bone has a much larger transfer rate from blood to bone than the

spongier trabecular bone [1]. Each equation represents the rate at which the amount of lead in the

compartment is changing. In order to investigate nonlinearity in our model, the transfer rates from

blood to bone and from bone to blood are no longer constant throughout the entire system. We

introduced a nonlinear functional form (tanh function) because this was a good fit to the transfer

rate curves in [1].

We also used a system of PDEs to describe how lead spreads in a compartment in addition to how

lead moves between compartments. This system incorporates di↵usion to show how lead spreads

in and out of the canalicular region of the bone [5]. The PDE solutions for each compartment are

estimated using a Galerkin approximation which transforms the PDE system into a large ODE

system. For the model to be accurate, we must also estimate the di↵usion rates for both inside and

outside of the canalicular region. We considered di↵usion rates from [5] and [4] and estimated the

di↵usion rate for the blood.

By incorporating di↵usion and spatial variation in the bone, we observed a more accurate descrip-

tion of the dynamics of lead in the body. Through numerical experiments, we were able to find

an estimate of the di↵usion in the blood and in the canalicular region. The surface plots in figure

3 show that lead is not distributed uniformly across the bone, but rather lead first starts in the
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Figure 2: The total amount of lead and the relative percentages of lead in the body. The red curve

with squares corresponds to ingestion rate I = 0.075 and the blue curve with x’s is for I = 0.15.

The solid lines are calculated using the linear ordinary di↵erential equations, while the dashed lines

are calculated using the nonlinear ordinary di↵erential equations.

Figure 3: Surface plots for the amount of lead in each compartment are shown in the first row. The

spatial averages of lead at each time point for each compartment are shown in the second row.

canalicular territory, then di↵uses outward to the rest of the bone. Figure 2 shows the di↵erences

in the total amount of lead for the linear and nonlinear systems. It also shows di↵erent evolutions

of the percentage of lead in the two bones. Our research shows that di↵usion and nonlinear factors

play an important role in the propagation of lead.
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Di↵usion Maps in Equation-Free Modeling

Paul Carter, Tracy Chin, Jacob Ruth, Björn Sandstede, and Rebecca Santorella

1 Equation-Free Modeling

In many complex dynamical systems, low-dimensional macroscopic behavior emerges from interactions at
the high-dimensional microscopic level. Kevrekidis and colleagues have developed a multi-scale approach,
called equation-free modeling, to estimate this macro-level behavior through short simulations of the micro-
system. The phrase ‘equation-free modeling’ refers to how this method estimates macroscopic variables
whose behavior cannot be modeled in an explicit form. This algorithm works through the following three-
step process: (1) lift - create initial conditions for the micro-system based on the initial macro-state, (2)
evolve - simulate the micro-system for short bursts, and (3) restrict - estimate the macro-state based on
the evolution of the micro-state [5, 6]. Not all systems that demonstrate macroscopic behavior are good
candidates for equation-free modeling. Ideally, the system should be slow-fast, and the macro-level variables
should parametrize the slow manifold.

2 Di↵usion Maps

One way to pick out relevant macroscopic variables is to use manifold-learning techniques, which parametrize
manifolds based on data from simulations of the underlying system [8]. To parametrize our system, we use
di↵usion maps, a nonlinear machine-learning technique. This method uses a connection between heat di↵u-
sion and random walks to make a Markov transition matrix on the data, with higher transition probabilities
between data points that are closer together [1, 2].

A simple example with a swiss roll illustrates how di↵usion maps can parametrize a data set [4, 7, 8].
We uniformly sample m = 1500 data points given by

(x, y, z) = (✓ cos ✓, ✓ sin ✓, ht), ✓ 2 [0, 2⇡), t 2 [0, 1].

Since this data set is clearly parametrized by ✓ and t, the di↵usion map embeds the original three-dimensional
data into a two-dimensional manifold given by ✓ and t.

(a) Parametrized by ✓. (b) Parametrized by h.

Figure 1: Swiss roll (h = 40) colored by the first two distinct eigendirections. Reproduced based on [3, 4].

3 Di↵usion Maps and Equation-Free Modeling

In general, equation-free modeling requires problem-specific lifting and restriction operators; however, when
using di↵usion map embeddings as macroscopic variables, it becomes possible to define more general opera-
tors. Previous papers have suggested using the Nyström extension for restriction and simulated annealing for
lifting [4, 7]. We find that the Nyström extension e�ciently embeds Xnew into our low dimensional system,
but simulated annealing does not yield accurate results.
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Instead, we define an implicit scheme to find a lifted profile that is close to a target macro-state and already
on the slow manifold. First, we find two microscopic profiles in our data set x

i

and x

j

with corresponding
macro-states �

i

and �

j

which, after a brief evolution, satisfy the macroscopic condition

�

i

< �target < �

j

. (1)

Then, we build a profile x as a linear combination of x
i

and x

j

, evolve it briefly, restrict it to �

x

, and swap
the resulting embedding with either �

i

or �
j

to ensure that (1) is still satisfied. By repeating this process,
we eventually converge upon a lifted profile x that corresponds to �target.

4 Tra�c Application

We apply equation-free modeling to a system of n cars driving around a ring road of length L from [9]. All
cars follow uniform, deterministic behavior governed by:

⌧ ẍ

i

+ ẋ

i

= V (�x

i

), i = 1, 2, ...n, (2)

where ⌧ is the inertia, x
i

is the position, �x

i

is the headway, and V is the optimal velocity function:

V (�x

i

) = v0(tanh(�x

i

� h) + tanh(h)). (3)

Based on the parameter v0 and initial conditions, two patterns can emerge: free-flow or tra�c jams. In [9],
Marschler et al. use the standard deviation of the headways (�) as their macroscopic variable to classify
tra�c behavior. We use di↵usion maps to verify � as an appropriate macroscopic variable. In Figure 2a, the
di↵usion map embedding is plotted against the standard deviation of the headways. Since the macroscopic
variables �1 and � clearly have a one-to-one relationship, the di↵usion map verifies � as a good choice.

(a) �1 has a one-to-one relationship with � (b) The top branch corresponds to stable jams and the

lower branch to unstable jams.

Figure 2: Comparison of the equation-free methods in � and in �1.

We reproduce the bifurcation diagram presented in [9], but using only di↵usion map coordinates and the
lifting and restricting operators defined above (Figure 2b). Although the bifurcation diagram produced by
the di↵usion map embedding follows the same general trajectory, it is significantly less precise due to errors
in lifting and restricting as well as the sparsity of our data around the unstable lower branch.

5 Conclusions

When the presence of an underlying slow manifold is known, di↵usion maps can be a valuable tool for
identifying useful parametrizations; however, further work must be done to improve the utilization and
accuracy of di↵usion map based operators in equation-free modeling.
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Summary of Koopman Theory Results

Carter Chain, Micah Pedrick, Ryan Utke

Set-up

We explored the Koopman operator, specifically the relationships between stability, eigentheory, and ob-
servable space. Given some dynamical system

xk+1 = F (xk)

and a space of observables F : K ! K, the Koopman operator U : F ! F is defined by U(g) = g � F .
This gives the analogue of the dynamical system in observable space, with the hope that these ”observable
dynamics” are connected to the original dynamics of interest. Our general results are as follows, glossing
over some technical assumptions and the like:

Construction of eigenfunctions

We can construct an eigenfunction for simple one-dimensional dynamics when |�| < 1. The
construction relies on first finding a fundamental domain on which to define a function, then propagating
this domain through the dynamics, scaling by � each iteration. This also indicates the importance of
the observable space, as di↵erent observables give di↵erent restrictions of the function behavior on the
fundamental domain.
We can construct a continuous eigenfunction for any unique globally stable or unstable fixed

point or limit cycle. In fact, the construction generalizes to stable or unstable fixed points in any system,
again assuming uniqueness of the attractor: take some surface around the fixed point, and its image under
the dynamics. This bounds some region to be used as the fundamental domain, which then defines the
behavior of any eigenfunction. This generalizes even further to limit cycles, where taking a surface around
one point of the cycle and its image under the nth iterate of the dynamics (for n the period of the cycle)
to bound the fundamental domain.
We established a relationship between the rates of convergence and divergence of equilibria

and the L

2
eigenvalues. In particular, the rate of convergence to an attractor determines a maximum

(possibly infinite) spectral radius, while the rate of divergence from an unstable equilibrium determines a
minimum (possibly zero) radius. The relationship arises through integrability requirements: su�ciently
fast convergence to an attractor of the system can make the eigenfunctions corresponding to eigenvalues of
modulus greater than one diverge slowly enough to be integrable, and similar arguments hold for unstable
equilibria. Subexponential convergence or divergence results in a maximum or minimum spectral radius
of 1, respectively. Exponential convergence or divergence sets a bound a positive distance away from 1,
determined by the base of the exponential, which is not attained. Superexponential convergence results
in all complex values of modulus greater than 1 being eigenvalues; superexponential divergence allows all
complex values with modulus less than 1. This means that the L2 spectrum is typically an annulus in the
complex plane.

1



Numerical Approximations

Spectra converge slowly using typical finite-di↵erence methods. In a naive scheme (partition the
interval into equidistant points, approximate the Koopman operator by an operator on Rn), the spectrum
included 1, some spurious values depending on the system (for instance, with xk+1 = 0.8xk, 0.8 is an
eigenvalue), and a disc centered at the origin. As we increase the partition size, this disc should expand to
fill the entire interval. In the linear case, convergence is unclear, certainly slow, while for say the quadratic
case the approximated spectrum does not seem to converge to the unit disc at all, certainly not quick
enough to be practical.
Pseudospectra, which converge rapidly, are a practical alternative. To deal with these problems,
we turn to the pseudospectrum, which allows ends up converging to the full unit disc quite quickly.
Pseudospectra are related to the size of the resolvent norm, or rather how non-normal an operator is. In
a system with a 2-cycle, we see an eigenvalue of �1, while in a system with a 3-cycle we see eigenvalues
e

2⇡i
3 . Around �1, we see the resolvent norm is large, and the (approximation of the) Koopman operator

is non-normal, but around e

2⇡i
3 we see di↵erent behavior depending on the chaotic behavior of the system.

In one example, where the chaos is restricted to a measure 0 set, the Koopman operator is non-normal
around e

2⇡i
3 as expected. However, in another example, wherein the 3-cycle was surrounded by chaos, the

Koopman operator was normal around e

2⇡i
3 , with no apparent increase in resolvent norm.

Miscellany

We explored some generalized eigentheory. We explicitly found generalized eigenfunctions for linear
dynamics and C

0(⌦) observables. In this case, there is an infinite chain of generalized eigenfunctions for
all proper eigenfunctions with eigenvalue of modulus strictly less than 1. These are in a sense generated
by the logarithm function, with each nth order generalized eigenfunction in the chain being a product
of the proper eigenfunction and a degree n polynomial in the logarithm. It seems like this ”generator”
mechanism may be present in other dynamics. Since imposing di↵erentiability requirements shrinks the
disc of eigenvalues within which eigenfunctions have generalized eigenfunction families in the linear scheme,
the relationship between C

k(⌦) and generalized eigentheory seems worth investigating.
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Project Summary: Nonorientable Bundles

Surabhi Desai, Melissa Stadt, and Aric Wheeler
Mentors: Margaret Beck and Björn Sandstede

TAs: Tarik Aougab and Paul Carter

August 18, 2016

1 Project Description

The goal of our project was to build on the study of localized roll solutions by considering systems
with nonorientable stable and unstable manifolds of the periodic orbit. We considered the system
of ordinary di↵erential equations

u

x

= f(u, µ), u 2 R4
, µ 2 R (1.1)

in R4, where f is some smooth function with a parameter µ. Localized roll solutions are solutions
that start from some steady state to an oscillatory state for some time then return to the steady
state. Figure 1.1 shows an example of a localized roll solution in phase space.

Figure 1.1: Example of gluing in phase space in R3. The red trajectory represents a front and the
blue trajectory represents a back that travel from the equilibrium around the green periodic orbit
then are glued at the yellow point, creating a localized roll solution.

1.1 Background

In the system (1.1) there is assumed to be a periodic orbit, �, and two-dimensional stable and
unstable manifolds of the periodic orbit. The stable manifold of �, W

s(�, µ) has a flow that
attracts solutions towards the periodic orbit. Similarly the unstable manifold of �, W u(�, µ) has

1



𝛴out

𝛴in

Wu(0,𝜇)

𝜸 Ws(𝛾,𝜇)
Wu(𝛾,𝜇)

Figure 1.2: An illustration of a piece of the system near the periodic orbit (red) and the unstable
and stable manifolds of the periodic orbit. The sections ⌃

in

and ⌃
out

are in gray at distance � > 0
from the periodic orbit along the respective manifold. In green we have the unstable manifold of the
equilibrium intersecting ⌃

in

. By reversibility the stable manifold of the equilibrium will intersect
⌃

out

and return to the equilibrium, but is not included in this illustration for clarity.

a flow that repels solutions away from the periodic orbit. To study the solution types we change
the coordinate system to a system called Fenichel coordinates which straighten out the stable and
unstable manifolds of �. In the analysis, in order to determine when a solution enters the region
of the periodic orbit we define ⌃

in

and ⌃
out

which are sections that are � > 0 distance from
� perpendicular to W

s(�, µ) and W

u(�, µ) respectively as shown in Figure 1.2. There are also
unstable and stable manifolds of the equilibrium, u = 0, W u(0, µ) and W

s(0, µ) respectively. The
stable manifold of the equilibrium encodes all the trajectories that leave the � region that is defined
by ⌃

out

and return to the equilibrium. Figure 2.5 shows an illustration of a system that is orientable
and was studied in [1].

1.2 Nonorientable Bundles

Our project was to study how solutions in the orientable system change when the stable and unstable
manifolds of the periodic orbit are nonorientable. Since the stable and unstable manifolds of the
periodic orbit are two dimensional, they become Möbius bands as shown in Figure 1.3.

2 Results

The types of intersections of ⌃
out

and W

u(0, µ) are important in determining the types of localized
roll solutions found in the system. These intersections are encoded in a set defined as

� := {(', µ) 2 S1 ⇥ J : W s(0, µ) \W

uu(�(', µ), µ) \ ⌃
out

6= ;}, S1 = [0, 4⇡]/ ⇠ .
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𝜸

0 2𝝅 4𝝅Wu(𝛾,𝜇)

Ws(𝛾,𝜇)
Figure 1.3: An illustration of Möbius band stable and unstable manifolds of the periodic orbit. We
must consider 4⇡-periodicity in order to match the vector directions so we visualize the stable and
unstable manifolds of the periodic orbit as two Möbius bands glued together. The red arrows indicate
the general direction of the flow on the respective invariant manifold to the periodic orbit depicted
in green. The black and blue edges of the manifolds are where ⌃

in

and ⌃
out

are respectively. In
yellow are the examples of the ps(x, µ) and p

u(x, µ) vectors with the condition of changing directions
after 2⇡.

𝛤𝜇

𝜑4𝜋

(a)

𝛤𝜇

𝜑4𝜋
(b)

𝛤𝜇

𝜑4𝜋
(c)

Figure 2.1: Examples of isola intersections.

2.1 Isolas

An isola is a local intersection that is path homotopic to a point when considering the space ⌃
out

.
An isola can be any intersection that does not intersect for some ' 2 [0, 4⇡]. The solutions for isolas
are very similar to those of the orientable case because of the local geometry. There is a change in
the distance between saddle nodes in the bifurcation diagrams as shown in Figure 2.2. In Figure
2.1 some examples are illustrated to show what the isola intersections may look like.

2.2 Global Intersections

A global intersection is an closed curve that is not contractible on ⌃
out

. Therefore a global inter-
section intersects at every ' 2 [0, 4⇡]. In the orientable case of (1.1), these intersections lead to
snaking behavior in the bifurcation diagrams which is a characteristic of interest in the study of
localized roll solutions. An example of snaking behavior in a bifurcation diagram is given in Figure
2.4. We found in the nonorientable case that these intersections are not possible due to linking of
the boundary of the Möbius band W

s(�, µ) and the periodic orbit, hence snaking does not occur.
This result was generalized to systems with twisted invariant manifolds of the periodic orbit.
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𝜋

𝜇

L

2𝜋

(a) An example of a bifurcation diagram of isola

intersections in the orientable cylindrical system.

2𝜋

𝜇

L

4𝜋

(b) An example of a bifurcation diagram of isola

intersection in the nonorientable Möbius system.

Figure 2.2: An example of the isola bifurcation diagrams for an orientable and nonorientable system.
The vertical axis L measures the “time” x spent by the homoclinic orbit near the periodic orbit � so
is about equivalent to the L

2-norm of the corresponding localized state. The ellipsoids correspond
to the symmetric pulses and the horizontal branches correspond to the asymmetric pulses. The
solid lines and dotted lines correspond to di↵erent values of '0. Note that the distances between
the isolas in the nonorientable system bifurcation diagram is double the distance between isolas in
the orientable system.
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Figure 2.3: An illustration of a global intersection. The gray annulus is ⌃
out

with the blue curve
showing the intersection of the stable manifold of the equilibrium and ⌃
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. Note that there will
also be a global intersection by reversibility in ⌃
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.
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Figure 2.4: An example of a bifurcation that includes the characteristic bifurcation curve behavior
of snaking. Snaking is when there are two intertwining wiggly curves and was observed for global
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Figure 2.5: A three-dimensional schematic view of the gluing construction on the system with
positive Floquet multipliers thus a topologically cylindrical surface. The green circle is the periodic
orbit. The gray sections are parts of ⌃

in

and ⌃
out

as labeled. Note that in the system, ⌃
in

and ⌃
out

go all the way around the cylinder and annulus, but this is not drawn here for clarity. The red line
is a front that in forward time go through ⌃

in

near W s(�, µ) around the periodic orbit. The blue
line is a back that in backward time goes through ⌃

out

near W

u(�, µ) to the periodic orbit. The
front and back and shown to be glued to show a localized roll solution for this system.
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The Swift-Hohenberg equation (1) is a widely studied non-
linear partial di↵erential equation that can describe many
spatially-localized structures. Spatially-localized structures oc-
cur in the natural world, such as in vegetation patterns [6, 7]
and crime hotspots [3].
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The bifurcation structure of the one-dimensional Swift-
Hohenberg equation exhibits a phenomenon called snaking.
That is, solutions bounce between two di↵erent values of a
parameter, µ, while moving up in the L

2-norm. The mecha-
nism that creates snaking in the one-dimensional case is well-
understood [1, 2, 4]. However, numerical studies [5] have shown
that the bifurcation diagram for the two-dimensional Swift-
Hohenberg equation is far more complicated, consisting of a
lower snaking branch, isolas, and an upper snaking branch.

[MaCalla & Sandstede]

We attempted to better understand the two-dimensional
case through a dimensional perturbation to the one-
dimensional equation; to do so, we considered radially sym-
metric solutions to the planar equation, e↵ectively embedding
the one-dimensional case into two dimensions. Then, we con-
tinuously varied the dimension in a formal sense, letting the
dimension, n, be 1 + " where " is close to 0. Whereas in the
one-dimensional case we were able to restrict our equations to

the zero energy level set, this is no longer possible in the 1+ "-
dimensional case. We therefore numerically determined how
the energy of our system changes near the periodic orbit that
we considered in the one-dimensional case for a small pertur-
bation in the dimension.
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From these numerics, we concluded that it is reasonable to
assume that the energy of the system decreases. When " = 0,
there is a family of periodic orbits, each with constant energy,
that forms a torus. However, when " > 0, these periodic orbits
are no longer constant in energy, thereby creating a torus that
is foliated with these new orbits, and the solutions that we care
about decrease in energy.
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We therefore focused on heteroclinic solutions which start
near the torus, spiral down in energy, and converge in forward
time to the origin.
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This corresponds to solutions which are nearly periodic near
the origin and converge to zero as x ! 1.
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We are able to show that snaking as well as these roll solu-

tions persist in the " > 0 case, however, because the solutions
are no longer constant in energy, there is a limit to the number
of times solutions can wind around the torus without falling
o↵. As the number of rolls corresponds to the value of the L

2-
norm, this explains why there is an upper bound for the lower
snaking branch. This upper bound changes depending on the
value of " and is very large for small ". Letting L be this upper
bound, we can see that the predicted maximum height of the
lower snaking branch is as follows:

L = e

1/" (2)

In the future we hope to be able to explain the upper snaking
branch and the isolas for " > 0.
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1 Research Goals

The primary goal of our project was to understand the long-term stability of
agent-based models, especially the agent-based model of zebrafish pigment cells.
In particular, examining the zebrafish model led us to consider agent-based
models in which deterministic flow and stochastic processes occur on similar
timescales. The methods we used to do this were twofold: we simulated a one-
dimensional approximation of the model to gain an intuitive understanding, and
we applied previous results on piecewise-deterministic Markov processes to our
models to analytically show the existence of a stationary distribution.

2 Methods and Progress

2.1 Numerics

Figure 1: Toy Model in 2 Timesteps

We simulated a one-dimensional model over time (see Figure 1). To simulate
deterministic flow, we used ODEs that model cells repelling and attracting each
other. For birth and death, times were chosen based on a Poisson process, and
locations (for birth) were chosen probabilistically based on the ratios of cells of
each color in a given region and in long-range regions around it. For an example
of the full simulation, see Figure 2. We were able to create a simulation that
leads to “stripes” (or some one-dimensional analog of stripes) even when started
with random initial conditions. Additionally, we ran the simulation with only
deterministic movement or only birth and death to show that both are necessary
for the stable “stripe” pattern to form.

2.2 Analysis

We attempted to adapt the zebrafish model to the framework of a PDMP, which
is a family of Markov processes in which deterministic flow (in our case, cell re-
pulsion) is punctuated by random jumps in position or velocity (in our case,
changes in cell position model birth and death). We spent a significant portion
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Figure 2: Simulation Over 1000 Days

of the summer attempting to understand the framework and how it is analyzed
by Costa (1990), and using Costa’s results we were ultimately able to consider
models that increasingly approximated the zebrafish model and assess whether
or not they fulfilled the criteria for a stationary distribution. We began with
simple, relatively trivial models, such as a single cell flowing deterministically
and jumping to unifromly random locations within the state space, and ulti-
mately were able to produce results for more realistic systems as outlined in the
next section.

3 Results

Our main results involve three increasingly easily satisfied criteria for showing
the existence of a stationary distribution (assuming certain necessary assump-
tions are fulfilled) based on earlier criteria from Costa (1990). We show that,
from most general to least general, we can show the existence of a stationary
distribution our PDMP satisfies necessary assumptions and:

1. We can write the transition kernel for the Markov chain in terms of some
density ⇢

x

(y) that is defined everywhere in the state space E, and there
exists some compact set � ⇢ E s.t. 8 x 2 E � �,

R
� ⇢x(y)dy > 0, or,

2. We can show that there exists some closed set �0 ⇢ E s.t. ⇢

x

(y) <

L 8 x, y 2 E � �0, or,

3. We can write the transition kernel for the PDMP in terms of some density
⇢̃

�(x,s)(y) and we can show that ⇢̃
�(x,s)(y) is defined on E and 0  ⇢̃

x

(y) <
M < 1 8x, y 2 E and s 2 [0,1)

Using the third result, we analyzed a general system with n cells that flow
according to a system of ODEs approximating spring forces and jump simultane-
ously with uniform probability into intervals with length 2� around themselves,
and we were able to show that this system has a stationary distribution.

4 Future Work

We hope to be able to extend our results to apply to models closer to the full
zebrafish model. In particular, we want cell birth locations to be dependent on
the locations of other cells and not necessarily on the location of the dying cell,

2



and we would eventually like to extend the model to include a changing number
of cells.

We also hope to extend our research to be able to explicitly calculate stationary
distributions for our models, either analytically (if possible) or numerically.
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Abstract

Zebrafish are model organisms known for their distinctive horizontal
stripes formed by interactions between two types of pigment cells: yel-
low xanthophores and black melanophores. Our research builds upon an
existing agent-based model produced by Volkening and Sandstede that
successfully replicates wild type (WT) stripe formation on the zebrafish
body. We present a model for the development of WT stripes on the ze-
brafish caudal fin that incorporates the e↵ects of the fin’s bony rays on cell
di↵erentiation and migration. We find that stretching the domain primar-
ily in the horizontal direction, restricting cell birth based on the number
of like cells surrounding a location, and limiting melanophore birth to
bones has the greatest impact on improving our replication of WT stripe
formation.

1 Introduction

Zebrafish (Dario rerio) are model organisms known for their black stripes and
yellow interstripes formed by pigmented cells on the body and fins. The fo-
cus of our research is to investigate how inter-cellular interactions lead to the
development of WT stripe patterns on the caudal fin.

There are only two types of pigments cells present in the caudal fin: black
melanophores and yellow xanthophores. Their interactions are primarily re-
sponsible for the formation of patterns on the fin. While the stripes seem to
continuously extend, we claim that the underlying mechanisms of pattern for-
mation are di↵erent for both the body and the fin based on evidence from
mutations that a↵ect stripes on the body but not the fin.

The caudal fin of a young zebrafish initially starts as a paddle shape which
eventually transforms into a bi-lobed shape as an adult. The fin grows dis-
tally and continuously with the most growth occurring in a zebrafish’s first few
weeks of life. The fin gains structure from 16-18 bony rays that exhibit salta-
tory growth, have regenerative properties, and appear to a↵ect melanophore
migration.
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2 Research Goals

This project is an extension of an existing two-population agent-based model
produced by Volkening and Sandstede that successfully replicated WT pattern
formation along with mutation and ablation experiments but was unable to
model stripes on a caudal fin domain. Therefore the main focus of our research
is to successfully model WT pattern formation on the caudal fin by improving
the caudal fin domain, implementing cell-bone interactions, and adjusting cell
birth, death, and migration rules. We were also interested in replicating several
fin mutations such as leopard and long fin, as well as reproducing fin regeneration
experiments. However, we were unable to explore these interests due to time
constraints.

3 Domain Modelling

Our model contains a realistic caudal fin domain that incorporates the presence
of 18 bony rays. In order to remain true to the biology, we utilized image
analysis to trace a smooth outline of a set of developing fin images provided in
Parichy et al. 2009. We were able to simulate continuous growth of the caudal
fin on a day-to-day basis through a transformation process of a sequence of these
images.

In order to model possible cell-bone interactions, we included 18 bony rays
that grow in proportion to the caudal fin domain. Based on our measurements
of fin images from Parichy et al. 2009, there is roughly a 3�angle di↵erence
between each ray which remains constant throughout fin growth.

4 Major Modifications to Body Code

Initially, we attempted to emulate WT stripe development by altering param-
eters in the code, such as the number of cells born each day, cell-to-cell forces,
and creating new initial conditions to represent the fin pattern at di↵erent stages
during zebrafish development. Unfortunately these changes proved to be unsuc-
cessful.

Melanophore Migration and Di↵erentiation

Examining images of developing WT and mutant zebrafish fins lead us to
infer that the locations of the bony rays a↵ect melanophore di↵erentiation and
migration. Therefore, we implemented rules that restricted melanophore dif-
ferentiation and migration to the bone vectors to varying degrees. The most
e↵ective combination we discovered involved melanophores di↵erentiating only
along bones but migrating freely.

Stretching Domain

After working with a non-stretching domain for most of the summer, we
recently implemented a function that updates the cell positions by stretching
every day as the domain grows. Preliminary functions stretched the cells radially
from an origin along the proximal edge or along bone vectors, but the most
e↵ective model accounts for the nonlinear domain growth by multiplying the
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cell positions by a decaying scaling vector that favors horizontal rather than
vertical growth.

Increasing Stability of Random Birth

The original model evaluated possible locations for cell di↵erentiation based
on overcrowding and melanophore and xanthophore proportions. We added a
parameter called “undercrowding” that ensures that if a cell is born, a certain
number of other cells must be present locally. This condition prevents patterns
from emerging in the lobes around a cluster of randomly di↵erentiated cells
and spreading proximally. WT development observes patterns originating at
the base of the fin and spreading distally with randomly distributed cells in the
most distal regions. This “undercrowding” parameter replicates these trends.

5 Most Recent Result

Figure 1: Day 200: Comparison of fin image (Parichy 2009) at SL26 and simu-
lation results. Simulation was run from day 33 to day 200 on a growing domain.
The fin was initialized with one full length center black stripe surrounded by
partial length black stripes on either side. The rest of the fin was densely cov-
ered with yellow cells. Black cells were born only on the bones but allowed to
migrate in any direction. Note the horizontal yet meandering directionality of
the black stripes.

6 Future Work

Though promising, our work this summer is far from complete. This project
can be continued through further investigations of the following topics:

1. Melanophore Migration Inspection of images causes us to believe that
the locations of the bony rays a↵ects the movement of melanophores. We
are interested in testing many more potential mechanisms that explain
this interaction.

2. Melanophore Populations Genetic research on mutated genes such as
the kit and fms indicates that there are multiple pathways for melanophore
migration. Treating these di↵erent di↵erentiation pathways as di↵erent
populations of cells could be beneficial to future models.

3. Independent Xanthophore Patterning Photos of the melanophore-
lacking nacre mutants indicate that even in the absence of melanophores,
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xanthophores exhibit a spatially dependent pattern. These yellow cells
tend to di↵erentiate and migrate only along the dorsal and ventral ends
of the fin, with large clusters at the dorsal and ventral ends of the fin
base. In contrast, the xanthophore-lacking pfe↵er mutation shows spatial
uniformity in melanophore population on the fin. Currently, the model
does not account for these phenomena.

4. Timescale AdjustmentWe are interested in further tuning the timescale
in the domain development and cell birth and death. Currently our time
scale is based o↵ of measurements from Parichy et al. 2009. We believe
that more cycles of birth and death each day may contribute to patterns
developing more accurately and a larger cell population in the domain.

5. Data Aggregation Currently, all the data the model was collected from
a limited set of photographs of WT development, mostly published in
Parichy et al. 2009. More images, especially incrementally between SL 10
and SL 16, would give us key insight into how patterns develop and go far
in informing our model. Our domain could then be based more accurately
on average fin size and growth rates.
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