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Brief description. This course is an introduction to Metric Geometry and applications. Of
particular importance will be the definition and properties of the so called Gromov-Hausdorff
distance between metric spaces and applications to shape and data analysis and matching.
We’ll also look into the setting of directed/asymmetric networks.

Introduction. Finite metric spaces are a natural model for data. From a finite metric space
(X, dX) one can induce several different simplicial filtrations. Examples include the Rips and
Witness filtrations. From these simplicial filtrations, via the mechanism of persistent homology
one obtains barcodes ( or persistence diagrams) B(X) as a summary of the metric information
contained in the data.

A main goal of this mini-course will be to establish the mathematical and computational
language to express the stability of the assignment X 7→ B(X). In order to do this, one the one
hand one needs a way of measuring distance between the ”input”: that is, one needs a gadget
that takes two finite metric spaces (X, dX) and (Y, dY ) and produces a number measuring the
distance between these objects. On the other hand one needs a notion of distance between the
outputs: the barcodes B(X) and B(Y ).

The notion of distance that we’ll use for measuring the discrepancy between B(X) and B(Y )
will be the so called bottleneck distance dB(B(X),B(Y )). And, in order to measure distance
between finite metric spaces we’ll use the Gromov-Hausdorff distance dGH(X, Y ). In particular,
we’ll eventually proving the following theorem:

Theorem 1. Let (X, dX) and (Y, dY ) be any two finite metric spaces and let k be any non-
negative integer. Let BRk (X) and BRk (Y ) be the respective Rips Homology barcodes in dimension
k. Then,

2 dGH(X, Y ) ≥ dB(BRk (X),BRk (Y )). (1)

Now, a fact is that the computation of the GH distance between finite metric spaces leads to
a very ”complex” algorithmic problem. In fact, theoretical comuter scientist refer to a problem
of this type as NP-hard. In contrast, the right hand side of (1) can be computed in time which
depends polynomially on the ”size” of the inputs X and Y . This means that the lower bound
provided by the theorem gives us a computationally tractable way of estimating the distance
between finite metric spaces (datasets). This, as we will see in this course, has a strong impact
on applications.

Example 1. For example, pick a real number ε > 0 much smaller than 1. Then in the above
theorem let k = 0, X be the metric space with two points at distance one from each-other, and let
Y be the metric space with two points at distance (1 + ε) from each-other, then dGH(X, Y ) = ε

2
.

On the other hand, BRk (X) = {[0, 1), [0,∞)} and BRk (Y ) = {[0, 1 + ε), [0,∞)}. Then, one can
verify that the bottleneck distance is ε. This means that these choices for X and Y produce an
equality in the bound given in the theorem, therefore, the ound is tight.

In order to prove the theorem above we’ll have to study a number of additional tools,
including the notion of the interleaving distance between persistence modules.
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Format: The course consists of a blend of theoretical and practical/computational sessions.
During the computational sessions we’ll be running examples in Matlab. Some of these ex-
amples will build upon the JavaPlex software you will learn in Henry’s course: http://

appliedtopology.github.io/javaplex/. Javaplex tutorial: http://www.math.colostate.

edu/~adams/research/javaplex_tutorial.pdf

Reading materials
This mini-course will rely heavily on the material of the first week (simplicial complexes, fil-
trations, persistent homology of finite metric spaces). Besides basic/minimal knowledge about
metric spaces, students will be expected to have a working knowledge of the persistent homology
of Rips filtrations, the bottleneck distance between persistence diagrams, as well as familiarity
with software tools (e.g., javaPlex) to carry out explicit computations.

Assignment 1 (Reading assignment). Start reading [1] and complement with material from
[3] as needed.

General references are included below.
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