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The success of Deep Neural Network (DNN) originates from the richness of the learning function
Fv) = Fr(Fr-1(-- F2(Fi(v)))) (1)

associated with the network. Here v € RP is the input and F; denotes the operation at the 7*®
(hidden) layer. DNN creates complex functions from simple ones by composition. We focus on
DNNs that have piecewise linear activation functions, e.g. ReLU(v) = v4. In this case, each layer
of nodes slices the input space by a number of hyperplanes, thereby enriching the learning function
by allowing it to be linear on each of the sliced pieces that are increasing in number and shrinking in
size. The optimization procedure employed when we train the network is nothing but a systematic
approach for determining this slicing so that the learning function matches with the data. That is,
given data {v’,y’}, we aim to find function F'* in some function class such that

F*(v) ~ g

Back propagation executes chain rule for differentiating the network learning function F(-) (1)
so we can use gradient-based approaches during the optimization for locating F*(-).
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Figure 1: Picture from [5]. Here is a three hidden layer ReLU network, with p = 2 and four units
in each layer. The left pane shows activations for the first layer. The center pane shows activation
boundary lines corresponding to second hidden layer neurons, in green, bending at the boundaries
at the left. The right pane adds the on/off boundaries for neurons in the third hidden layer, in
purple, bending at the two sets of boundaries. This final set of convex polytopes corresponds to all
activation patterns for this network (with its current set of weights) over the unit square, with each
polytope representing a different linear function.



Figure 1 shows the slicing by a 3-layer network to a two-dimensional input space. It is noticeable
that the resulting number of “linear regions” quickly, in fact, exponentially, increases as we add layers.
Moreover, these regions are often irregular. This is drastically different from the way traditional
numerical algorithms, e.g. Finite Element /difference Methods, discretize the input space, see Figure
2. These traditional methods, e.g. linear finite elements, are also adopting piecewise linear functions.

Figure 2: Possible grids for finite element (Left) or finite difference (right) methods.

Directions of project

The goals are theoretical investigation, practical verification and visualization of the “expressivity”
of deep neural network function F'(v), and the comparison between a shallow ReLU DNN and linear
finite elements. These are the possible steps/deliverables:
e A thorough combinatorial study of the number of linear regions for shallow and deep neural
networks. Part VII of the book [6] and papers [3] [4] are good starting points.
e A visualization of the slicing, including when the training of a simple network is in action.
e A study of the activation patterns, trajectory lengths, and network stability. [5] is a good
starting point.
e An investigation of the relationship between linear finite elements and a shallow ReL'U neural
network. Start with the relevant sections of [1].
e Study and extension of Section 3 of the paper [2| toward A Neural Network Based Approach
Towards Matrixz Inversion.
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