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There are many applications that give rise to matrix eigenvalue problems. These span from tra-
ditional areas of analysis of vibrations, stability of an electrical network, and physical applications
related to e.g. quantum mechanical systems, to the more nascent areas of data analysis and machine
learning. In addition to the basic definitions and results, concepts and techniques that make eigen-
solvers efficient include the Eigenstructure-preserving transformations (shift, invert, shift & invert,
polynomial), subspace projection, deflation and restarting techniques. Numerical algorithms often
integrate all these ingredients. These algorithms include:
• Power Method. Perhaps the highest profile application of this method is the calculation of

Google PageRank.

Algorithm: Power Method
1. Choose a nonzero initial vector v(0)

2. For k = 1, 2, . . . , until convergence, Do:
v(k) = 1

αk
Av(k−1)

αk = the component of Av(k−1) with largest modulus.
3. EndDo

• QR Algorithm and its practical variants (e.g. with shifts), resulting from the Schur form
theorem which states that any matrix is unitarily similar to a triangular matrix from which
we can read off the eigenvalues.

Algorithm: QR without shiftsa

1. Until A becoming sufficiently close to being upper triangular, Do:
Compute the QR factorization A = QR
Set A := RQ

2. EndDo
aNever used in practice

• Rayleigh-Quotient Iteration or, in general, the Min-Max theorem (Courant-Fischer).

Min-Max theorem
The kth largest eigenvalues of a Hermitian matrix A is characterized by

λk = max
S,dim(S)=k

min
v∈S, v 6=0

(Av, v)

(v, v)
.

As a consequence, the largest and smallest eigenvalues are

λ1 = max
v 6=0

(Av, v)

(v, v)
, λn = min

v 6=0

(Av, v)

(v, v)
.
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For certain applications, e.g. error analysis for Galerkin-type methods, we need to evaluate the
smallest eigenvalue or bound it from below. Moreover, this task often exists for a parameter-
dependent family of matrices having an affine structure

A(µ) =

Q∑
q=1

θq(µ)Aq.

In this setting, even the most efficient eigensolver might become infeasible due to the sheer
number of eigenproblems there are to solve. The Successive Constraint Method [3, 2] was
invented to address this difficulty by interpreting this problem as a Q-dimensional linear
program

λn(µ) = min
v 6=0

 Q∑
q=1

θ(µ)
(Aqv, v)

(v, v)

 := min
v 6=0

 Q∑
q=1

θ(µ)yq

 .

A small number of constraints, partially resulting from the resolution of the exact eigenvalues
λn(µ) at judiciously selected parameter values {µ1, · · · ,µn}, are then enforced. The result
is a set of rigorous and tight lower and upper bounds for λn(µ) for any µ, that are obtained
with an expense independent of the size of A(µ).

Directions of project

The overarching goal is the thorough investigation of the above algorithms or others that interest
you, and their application. These are the possible steps/deliverables:
• Study various applications of Eigen value problems, in particular quantum mechanics. Chapter

10 of the book [5] and the review paper [6] are good references.
• Study the standard PageRank algorithm and its variants, and implement your own version

before applying it to the ICERM webpages. The paper [4] serves as a good starting point.
• Study the linear program based Successive Constraint Method (SCM) [3, 2] for a fast evalu-

ation of rigorous bounds of the extremal eigenvalues for parametric, symmetric, and positive
definite matrices.
• Challenging. Algorithms in [3, 2] are for extremal eigenvalues. Can you extend them to the

intermediate ones that are close to the extremes?
• Investigate the approach in [1] to obtain the spectra of matrices without solving eigenvalue

problems.
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