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1. Clustering

The grouping of a collection of objects into similar “cliques” or “clusters” is a central
goal in data analysis. More precisely, in applications one typically has a very large number
of data points, X = {x1, . . . , xn} for n� 1, where each data point can be represented as a
point in some Euclidean spaceRd (although more general representations are possible). One
goal is the partitioning of these elements into clusters, i.e., the identification of k subsets
{Cj}kj=1 of X such that

X = ∪kj=1Cj , Ci ∩ Cj = ∅,

for i, j = 1, . . . , k. If we view the data X as some cloud of points in Rd, then geometrically
one could interpret the clustering procedure as seeking to identify k clusters of points that
are geometrically distributed in Rd. Clustering naturally requires some notion of “distance”
or “similarity” between points. For example, we might have some way to characterize the
“similarity” between two points in the set:

wij = exp(−dist(xi, xj)
2),

where dist computes some notion of “distance” between two points. (Points that are small
“distance” from each other should be very “similar”.) If dist(·, ·) is, say the Euclidean
norm on Rd, then the set of weights {wij}ni,j=1 are functions of the collection of pairwise

(Euclidean) distances between points, and the clustering problem is straightforward to
interpret: we are looking for clusters of points such that the pairwise distance between two
points in a cluster is “small”. In many practical applications, some non-trivial notions of
distance are required to properly interpret data; i.e., Euclidean distance may be misleading,
see Figure 1.

2. Spectral clustering

Given the pairwise distances {wi,j}, one algorithm that can be used to detect and con-
struct clusters is the k-means algorithm. The challenge is that the detection of clusters in
high-dimensional space (d� 1) is both geometrically and computationally challenging. One
tool to combat this issue is to preprocess the data via graph-spectral dimension reduction.
Here is one basic approach, typically called “unnormalized spectral clustering”.

2.1. The graph Laplacian. The first step is to construct the graph Laplacian. By con-
sidering each individual point xj as the vertex of a graph, undirected weighted edges are
constructed via the pairwise distances. I.e., two vertices xj and xk are connected by an
edge in the graph of weight wij . We can represent these edge connections via the weight
matrix W ∈ Rn,n, with entries (W )i,j = wi,j .
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2. CLASCAL AND ISOMAP

2.1. CLASCAL

Traditional MDS was designed to handle a single set of
pairwise proximities only. A number of models have been
presented to adapt MDS for multiple-subject experiments,
of which the most important for studying timbre has been
CLASCAL [11]. The CLASCAL model seeks to min-
imise the approximation error in the following equation:

di jk �
�

R

Â
r=1

wC (i),r(x jr � xkr)
2

�1/2

(1)

where di jk is the dissimilarity rating that subject i assigned
to stimulus pair ( j,k), R is the number of dimensions in
the output set, wC (i),r is a special weight for the so-called
latent class C (i) to which CLASCAL has assigned sub-
ject i, and x jr and xkr are the r-th components of the output
vectors for stimuli j and k. Latent classes are meant to rep-
resent groups of subjects who pursue similar rating strate-
gies. The number of latent classes used is a compromise
between over-parametrisation, e.g., the INDSCAL model,
which assigns each subject to its own class, and over-
generalisation, e.g., ignoring differences between subjects
by taking the average over all dissimilarity matrices. A
Monte-Carlo likelihood-ratio technique is used to deter-
mine the optimal number of classes.

Another problem with traditional MDS is that it as-
sumes all of the variance in a data set can be explained by
dimensions common to all stimuli. This assumption does
not hold for timbres: many include instrument-specific
components such as the sound of the returning hopper in a
harpsichord. A more sophisticated version of CLASCAL
separates these components, known as specificities, using
the following model:

di jk �
�

R

Â
r=1

wC (i),r(x jr � xkr)
2 + vC (i)(s j + sk)

�1/2

(2)

where s j and sk are the specificities for stimuli j and k and
vC (i) represents the weight subjects in class C (i) give to
specificities when distinguishing timbres [7, 10].

2.2. Isomap

Isomap arose as a solution to the problem of dimensional-
ity reduction for data sets like the famous ‘Swiss roll’ pic-
tured in Figure 1 [8]. Looking at the plot, it is obvious to
a human that the data are arranged on a two-dimensional
plane that has been coiled and presented in three dimen-
sions. This fact is not obvious to traditional MDS, which
strives to preserve every pairwise distance in the set, in-
cluding those between the ends of the roll and the inner or
outer loops. The ingenious solution in Isomap is to throw
away all pairwise distances in the set except those at the
local level, i.e., those in a small region immediately sur-
rounding each point in the data set. These regions can be
selected as a fixed number k of the nearest neighbours to

(a) Embedded in 3-D (b) Unrolled in 2-D

Figure 1: The ‘Swiss roll’ data set. On the left, the data is
presented in its original form. On the right, the data is pre-
sented as it should be unrolled for human interpretation.
Traditional MDS can never arrive at this solution, how-
ever, because it seeks to preserve the distances between
the ends of the roll and the inner/outer loops.

each point in the data set or as those points that fall within
a sphere of fixed radius e around each point. The other
distances are then recomputed using an all-pairs shortest-
path algorithm, yielding an approximation of the so-called
geodesic distances, or distances in the lower-dimensional
form. After these approximate distances are computed,
traditional MDS is applied.

At first glance, the Swiss roll appears to be a funda-
mentally different problem than that of estimating tim-
bre spaces. There is little reason to believe that human
subjects would willfully twist their ratings of the simi-
larities between timbre pairs into more dimensions than
are already present. The larger message of Isomap, how-
ever, is that unless a space is perfectly linear, large dis-
tances in a scaling model can mask important structures
in the data. It seems prudent to check for such structures
in psychological data, and because Isomap is based on
classical MDS, unlike a number other non-linear scaling
techniques, it lends itself naturally to combination with
CLASCAL. Each subject’s dissimilarity matrix is processed
according to the Isomap algorithm up to the final MDS
step. After this pre-processing is complete, the new dis-
similarity matrices are fed to CLASCAL as usual.

3. EXPERIMENTS AND RESULTS

We did not perform a new perceptual study for this paper,
but rather re-examined data from McAdams et al.’s 1995
study of 88 subjects [7]. We chose to examine the judge-
ments of the professional musicians in the study only, 24
in all, in order to simplify our analysis. The timbres used
in the study overlapped considerably with those used in
[6], which were a set of recorded, FM-synthesised tim-
bres designed to mimic traditional musical instruments.
In addition to 12 timbres from this set, McAdams et al.,
following the legacy of [5], also synthesised 6 hybrid tim-
bres, e.g., the oboleste, a combination of the perceptual
features of oboe and celesta sounds. Each subject had an
opportunity to rate the dissimilarity between all 153 pairs
of these 18 timbres.
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Figure 1. Plot from [1]. The “swiss roll” data set (left). Points in R3 are distributed
according on a two-dimensional submanifold, and from the application point of view, we
want points to be “close together” if they are close together with respect to the Euclidean
distance on the “unrolled” manifold in R2 (right). The Euclidean distance on the data set
in R3 is misleading since points points that are colored dark red and light blue look close
in the Euclidean distance (left), but the manifold distance of these (right) is large.

The degree dj of a vertex xj is the sum of the weights connecting it to all the other
vertices:

dj :=
n∑

i=1

wij .

The degree matrix D is then a diagonal matrix containing the degrees:

D = diag(d1, . . . , dn).

Finally, the graph Laplacian is defined as the symmetric positive-definite matrix,

L := D −W.

2.2. Spectral decomposition of the graph Laplacian. The second step in dimension
reduction via graph spectral methods is to replace each high-dimensional point xj ∈ Rd with

a low-dimensional point yj ∈ Rk with m � d. This is accomplished from the eigenvalue
decomposition of L:

L = V ΛV T ,

where Λ is a diagonal matrix with entries {λj}nj=1 that are ordered such that λj ≤ λj+1.

The jth column vj of the matrix V ∈ Rn×n is the eigenvector corresponding to λj .
The dimension reduction is accomplished by taking only the first m < n eigenvectors,

and truncating the rest. In particular if we form the column-truncated eigenvector matrix,
this defines our new points yj :

Vm :=


 v1 v2 · · · vm




︸ ︷︷ ︸
n×m

=




— y1 —
— y2 —

...
— yn —




︸ ︷︷ ︸
n×m
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2.3. Clustering on the set Y . The set Y now contains n points in Rm, but now m� d.
We still identify yj ∈ Rm with xj ∈ Rd, but now all the data lies in a much lower dimensional
space. The advantage of this is that standard clustering algorithms like k-means algorithms
(in general, algorithms that detect geometrical representations of data) are far more effective
at identifying geometrical patterns in lower dimensions. Thus, clustering on Y is (frequently
much) more effective than clustering on X. The combination of all the previous steps is a
graph spectral clustering algorithm.

Graph spectral clustering is flexible since it relies on low-dimensional geometry that is
learned only from pairwise distances, and has been successfully used in several real-world
applications such as image segmentation [3].

3. Project outlook

This project involves the following investigations:

• analytical investigation of graph and graph clustering properties, for example as in
[2]
• numerical implementation of graph clustering algorithms
• comparison of graph clustering methods on real-world data sets
• development of clustering algorithms that are customized for particular applications
• graph sparsification for acceleration of large data sets

Students will program in either Matlab or Python to focus the numerical investigation. A
good starting point for learning about spectral clustering is the reference [4].
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