
DNN

DNN: Final Presentation

Ryan Jeong, Will Barton, Maricela Ramirez

Summer@ICERM

June-July 2020

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 1 / 29

Outline

1 Deep Learning/Neural Networks Fundamentals

2 Universal Approximation Results with Neural Nets

3 Piecewise Linear Networks

4 On Expressivity vs. Learnability

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 2 / 29

Motivation

Source: Jay Alammar, How GPT3 Works Source: European Go Federation

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 3 / 29

DL Fundamentals

Figure: Source: Virtual Labs, Multilayer Feedforward networks

General idea of a Feedforward network
z
(l) = W

(l)
a
(l�1) + b

(l)

a
(l) = ReLU(z (l))

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 4 / 29

DL Fundamentals

Activation function

Cost function

Minimize cost function through backpropogation
Gradient Descent

@C0

@w (l) =
@C0

@a(l)
· @a(l)

@z(l)
· @z(l)

@w (l)

@C0

@b(l) =
@C0

@a(l)
· @a(l)

@z(l)
· @z(l)

@b(l)

Stochastic Gradient Descent

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 5 / 29

DL Fundamentals

Activation function

Cost function

Minimize cost function through backpropogation
Gradient Descent
@C0

@w (l) =
@C0

@a(l)
· @a(l)

@z(l)
· @z(l)

@w (l)

@C0

@b(l) =
@C0

@a(l)
· @a(l)

@z(l)
· @z(l)

@b(l)

Stochastic Gradient Descent

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 5 / 29

Convolutional Networks

Motivation: computational issues with feedforward networks

Figure: Source: missinglink.ai

For image recognition problems, on which CNNs are largely applied:

Convolution layer: slide small kernel of fixed weights along the image,
performing the same computation every time; activation performed on
output of a convolution layer
Pooling layer: divides result of convolution into regions and computes a
function on each one (usually just max); intuitively summarizes
information and compresses dimension
Finishes with fully connected layers

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 6 / 29

Convolutional Networks

Motivation: computational issues with feedforward networks

Figure: Source: missinglink.ai

For image recognition problems, on which CNNs are largely applied:
Convolution layer: slide small kernel of fixed weights along the image,
performing the same computation every time; activation performed on
output of a convolution layer

Pooling layer: divides result of convolution into regions and computes a
function on each one (usually just max); intuitively summarizes
information and compresses dimension
Finishes with fully connected layers

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 6 / 29

Convolutional Networks

Motivation: computational issues with feedforward networks

Figure: Source: missinglink.ai

For image recognition problems, on which CNNs are largely applied:
Convolution layer: slide small kernel of fixed weights along the image,
performing the same computation every time; activation performed on
output of a convolution layer
Pooling layer: divides result of convolution into regions and computes a
function on each one (usually just max); intuitively summarizes
information and compresses dimension

Finishes with fully connected layers

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 6 / 29

Convolutional Networks

Motivation: computational issues with feedforward networks

Figure: Source: missinglink.ai

For image recognition problems, on which CNNs are largely applied:
Convolution layer: slide small kernel of fixed weights along the image,
performing the same computation every time; activation performed on
output of a convolution layer
Pooling layer: divides result of convolution into regions and computes a
function on each one (usually just max); intuitively summarizes
information and compresses dimension
Finishes with fully connected layers

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 6 / 29

SVD classification model

Initial model from linear algebraic techniques as a baseline

MNIST dataset: handwritten digit classification for digits 0 to 9

Split the data into 10 classes, by the label of each data point

Compute SVD for each of the 10 new design matrices; number of
columns is a hyperparameter; yields matrix Uc for class c

Key idea behind algorithm: PCA equal to SVD
PCA: finding a lower-dimensional representation of the data that
preserves the most variance
Basis vectors come from SVD

Classification objective: argmin
c=0,1,...,9

||x � Uc(UT
c x)||2

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 7 / 29

SVD classification model

Initial model from linear algebraic techniques as a baseline

MNIST dataset: handwritten digit classification for digits 0 to 9

Split the data into 10 classes, by the label of each data point

Compute SVD for each of the 10 new design matrices; number of
columns is a hyperparameter; yields matrix Uc for class c

Key idea behind algorithm: PCA equal to SVD
PCA: finding a lower-dimensional representation of the data that
preserves the most variance
Basis vectors come from SVD

Classification objective: argmin
c=0,1,...,9

||x � Uc(UT
c x)||2

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 7 / 29

SVD classification model

Initial model from linear algebraic techniques as a baseline

MNIST dataset: handwritten digit classification for digits 0 to 9

Split the data into 10 classes, by the label of each data point

Compute SVD for each of the 10 new design matrices; number of
columns is a hyperparameter; yields matrix Uc for class c

Key idea behind algorithm: PCA equal to SVD
PCA: finding a lower-dimensional representation of the data that
preserves the most variance
Basis vectors come from SVD

Classification objective: argmin
c=0,1,...,9

||x � Uc(UT
c x)||2

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 7 / 29

SVD classification model

Initial model from linear algebraic techniques as a baseline

MNIST dataset: handwritten digit classification for digits 0 to 9

Split the data into 10 classes, by the label of each data point

Compute SVD for each of the 10 new design matrices; number of
columns is a hyperparameter; yields matrix Uc for class c

Key idea behind algorithm: PCA equal to SVD

PCA: finding a lower-dimensional representation of the data that
preserves the most variance
Basis vectors come from SVD

Classification objective: argmin
c=0,1,...,9

||x � Uc(UT
c x)||2

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 7 / 29

SVD classification model

Initial model from linear algebraic techniques as a baseline

MNIST dataset: handwritten digit classification for digits 0 to 9

Split the data into 10 classes, by the label of each data point

Compute SVD for each of the 10 new design matrices; number of
columns is a hyperparameter; yields matrix Uc for class c

Key idea behind algorithm: PCA equal to SVD
PCA: finding a lower-dimensional representation of the data that
preserves the most variance

Basis vectors come from SVD

Classification objective: argmin
c=0,1,...,9

||x � Uc(UT
c x)||2

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 7 / 29

SVD classification model

Initial model from linear algebraic techniques as a baseline

MNIST dataset: handwritten digit classification for digits 0 to 9

Split the data into 10 classes, by the label of each data point

Compute SVD for each of the 10 new design matrices; number of
columns is a hyperparameter; yields matrix Uc for class c

Key idea behind algorithm: PCA equal to SVD
PCA: finding a lower-dimensional representation of the data that
preserves the most variance
Basis vectors come from SVD

Classification objective: argmin
c=0,1,...,9

||x � Uc(UT
c x)||2

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 7 / 29

SVD classification model

Initial model from linear algebraic techniques as a baseline

MNIST dataset: handwritten digit classification for digits 0 to 9

Split the data into 10 classes, by the label of each data point

Compute SVD for each of the 10 new design matrices; number of
columns is a hyperparameter; yields matrix Uc for class c

Key idea behind algorithm: PCA equal to SVD
PCA: finding a lower-dimensional representation of the data that
preserves the most variance
Basis vectors come from SVD

Classification objective: argmin
c=0,1,...,9

||x � Uc(UT
c x)||2

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 7 / 29

Results from SVD Classification Algorithm

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 8 / 29

Results from SVD Classification Algorithm

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 9 / 29

Neural networks for MNIST

Feedforward neural networks: di↵erent architectures
Best performance, 1 hidden layer, with 128 units over 12 EPOCHS,
97.8% accuracy

Convolutional neural network: two convolutional layers (convolution
+ max pooling) and three fully connected layers (one of them being
output)

CNN was the best model, achieving 98.35 percent accuracy after 3
epochs (nearing 99 percent accuracy after roughly 10 epochs)

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 10 / 29

Feedforward Network Results

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 11 / 29

Motivating questions in NN approximation theory

What class of functions can be approximated/expressed by a standard
feedforward neural network of depth k?

How do we think about the shift to rectified activations from
sigmoidal functions, which perform well in practice?

What subset of all functions that are provably approximable by neural
networks are actually learnable in practice?

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 12 / 29

Motivating questions in NN approximation theory

What class of functions can be approximated/expressed by a standard
feedforward neural network of depth k?

How do we think about the shift to rectified activations from
sigmoidal functions, which perform well in practice?

What subset of all functions that are provably approximable by neural
networks are actually learnable in practice?

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 12 / 29

Motivating questions in NN approximation theory

What class of functions can be approximated/expressed by a standard
feedforward neural network of depth k?

How do we think about the shift to rectified activations from
sigmoidal functions, which perform well in practice?

What subset of all functions that are provably approximable by neural
networks are actually learnable in practice?

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 12 / 29

Classical Results: Shallow Neural Networks as Universal

Approximators

Definition: let ✏-approximation of a function f (x) by another
function F (x) with a shared domain X denote that for arbitrary ✏ > 0,

supx2X|f (x)� F (x)| < ✏

Definition: Call a function �(t) sigmoidal if

�(t) !
(
1 as t ! 1
0 as t ! �1

Cybenko (1989): Shallow neural networks (one hidden layer) with
continuous sigmoidal activations are universal approximators, i.e.
capable of ✏-approximating any continuous function defined on the
unit hypercube.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 13 / 29

Classical Results: Shallow Neural Networks as Universal

Approximators

Definition: let ✏-approximation of a function f (x) by another
function F (x) with a shared domain X denote that for arbitrary ✏ > 0,

supx2X|f (x)� F (x)| < ✏

Definition: Call a function �(t) sigmoidal if

�(t) !
(
1 as t ! 1
0 as t ! �1

Cybenko (1989): Shallow neural networks (one hidden layer) with
continuous sigmoidal activations are universal approximators, i.e.
capable of ✏-approximating any continuous function defined on the
unit hypercube.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 13 / 29

Classical Results: Shallow Neural Networks as Universal

Approximators

Definition: let ✏-approximation of a function f (x) by another
function F (x) with a shared domain X denote that for arbitrary ✏ > 0,

supx2X|f (x)� F (x)| < ✏

Definition: Call a function �(t) sigmoidal if

�(t) !
(
1 as t ! 1
0 as t ! �1

Cybenko (1989): Shallow neural networks (one hidden layer) with
continuous sigmoidal activations are universal approximators, i.e.
capable of ✏-approximating any continuous function defined on the
unit hypercube.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 13 / 29

Classical Results: Shallow Neural Networks as Universal

Approximators

Loosening of restrictions on activation function that still yield notion
of ✏-approximation:

Hornik (1990): extension to any continuous and bounded activation
functions, support extends to more than just the unit hypercube
Leshno (1993): extension to nonpolynomial activation functions

By extension, deeper neural networks of depth k also enjoy the same
theoretical guarantees.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 14 / 29

Classical Results: Shallow Neural Networks as Universal

Approximators

Loosening of restrictions on activation function that still yield notion
of ✏-approximation:

Hornik (1990): extension to any continuous and bounded activation
functions, support extends to more than just the unit hypercube
Leshno (1993): extension to nonpolynomial activation functions

By extension, deeper neural networks of depth k also enjoy the same
theoretical guarantees.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 14 / 29

Improved Expressivity Results with Depth

Let k denote the depth of a network. The following results are due to
Rolnick and Tegmark (2018).

Let f (x) be a multivariate polynomial function of finite degree d , and
N(x) be a network with nonlinear activation having nonzero Taylor
coe�cients up to degree d . Then there exists a number of neurons
mk(f) that can ✏-approximate f (x), where mk is independent of ✏.

Let f (x) = x
r1
1 x

r2
2 . . . x rnn be a monomial function of finite terms,

network N(x) has nonlinear activation having nonzero Taylor
coe�cients up to degree 2d , and mk(f) defined as above. Then
m1(f) is exponential, but linear in a log-depth network.

m1(f) = ⇧n
i=1(ri + 1)

m(f)  ⌃n
i=17dlog2(ri)e+ 4

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 15 / 29

Improved Expressivity Results with Depth

Let k denote the depth of a network. The following results are due to
Rolnick and Tegmark (2018).

Let f (x) be a multivariate polynomial function of finite degree d , and
N(x) be a network with nonlinear activation having nonzero Taylor
coe�cients up to degree d . Then there exists a number of neurons
mk(f) that can ✏-approximate f (x), where mk is independent of ✏.

Let f (x) = x
r1
1 x

r2
2 . . . x rnn be a monomial function of finite terms,

network N(x) has nonlinear activation having nonzero Taylor
coe�cients up to degree 2d , and mk(f) defined as above. Then
m1(f) is exponential, but linear in a log-depth network.

m1(f) = ⇧n
i=1(ri + 1)

m(f)  ⌃n
i=17dlog2(ri)e+ 4

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 15 / 29

Improved Expressivity Results with Depth

Let k denote the depth of a network. The following results are due to
Rolnick and Tegmark (2018).

Let f (x) be a multivariate polynomial function of finite degree d , and
N(x) be a network with nonlinear activation having nonzero Taylor
coe�cients up to degree d . Then there exists a number of neurons
mk(f) that can ✏-approximate f (x), where mk is independent of ✏.

Let f (x) = x
r1
1 x

r2
2 . . . x rnn be a monomial function of finite terms,

network N(x) has nonlinear activation having nonzero Taylor
coe�cients up to degree 2d , and mk(f) defined as above. Then
m1(f) is exponential, but linear in a log-depth network.

m1(f) = ⇧n
i=1(ri + 1)

m(f)  ⌃n
i=17dlog2(ri)e+ 4

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 15 / 29

ReLU Networks as Partitioning Input Space

A ReLU activation function - used between a�ne transformations to
introduce nonlinearities in the learned function.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 19 / 30

Review: ReLU Networks as Partitioning Input Space

Known theorems:

ReLU networks are bijective to the appropriate class of piecewise
linear functions (up to isomorphism of network)

For one hidden layer neural networks (p-dimensional input,
q-dimensional hidden layer): can combinatorially show an upper
bound on the number of piecewise linear regions:

r(q,p) =
Pp

i=0

�q
i

�

Montufar et al. (2014): The maximal number of linear regions of the
functions computed by a NN with n0 input units and L hidden layers,
with ni � n0 rectifiers at the ith layer, is lower bounded by

(⇧L�1
i=1 b

ni
n0
cn0)(⌃n0

j=0

�nL
j

�
)

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 20 / 30

Review: ReLU Networks as Partitioning Input Space

Known theorems:

ReLU networks are bijective to the appropriate class of piecewise
linear functions (up to isomorphism of network)

For one hidden layer neural networks (p-dimensional input,
q-dimensional hidden layer): can combinatorially show an upper
bound on the number of piecewise linear regions:

r(q,p) =
Pp

i=0

�q
i

�

Montufar et al. (2014): The maximal number of linear regions of the
functions computed by a NN with n0 input units and L hidden layers,
with ni � n0 rectifiers at the ith layer, is lower bounded by

(⇧L�1
i=1 b

ni
n0
cn0)(⌃n0

j=0

�nL
j

�
)

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 20 / 30

Review: ReLU Networks as Partitioning Input Space

Known theorems:

ReLU networks are bijective to the appropriate class of piecewise
linear functions (up to isomorphism of network)

For one hidden layer neural networks (p-dimensional input,
q-dimensional hidden layer): can combinatorially show an upper
bound on the number of piecewise linear regions:

r(q,p) =
Pp

i=0

�q
i

�

Montufar et al. (2014): The maximal number of linear regions of the
functions computed by a NN with n0 input units and L hidden layers,
with ni � n0 rectifiers at the ith layer, is lower bounded by

(⇧L�1
i=1 b

ni
n0
cn0)(⌃n0

j=0

�nL
j

�
)

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 20 / 30

Review: ReLU Networks as Partitioning Input Space

Known theorems:

ReLU networks are bijective to the appropriate class of piecewise
linear functions (up to isomorphism of network)

For one hidden layer neural networks (p-dimensional input,
q-dimensional hidden layer): can combinatorially show an upper
bound on the number of piecewise linear regions:

r(q,p) =
Pp

i=0

�q
i

�

Montufar et al. (2014): The maximal number of linear regions of the
functions computed by a NN with n0 input units and L hidden layers,
with ni � n0 rectifiers at the ith layer, is lower bounded by

(⇧L�1
i=1 b

ni
n0
cn0)(⌃n0

j=0

�nL
j

�
)

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 20 / 30

Visualizing the hyperplanes to depth k

First layer: hyperplanes through input space

All proceeding layers: ”bent hyperplanes” that bend at the
established bent hyperplanes of previous layers

Figure 1 of Raghu et al. (2017)

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 21 / 30

Visualizing the hyperplanes to depth k

First layer: hyperplanes through input space

All proceeding layers: ”bent hyperplanes” that bend at the
established bent hyperplanes of previous layers

Figure 1 of Raghu et al. (2017)

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 21 / 30

Visualizing the hyperplanes to depth k

First layer: hyperplanes through input space

All proceeding layers: ”bent hyperplanes” that bend at the
established bent hyperplanes of previous layers

Figure 1 of Raghu et al. (2017)

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 21 / 30

Expressibility vs. Learnability: Theorems

The following is from the work of Hanin and Rolnick (2019ab), and
concerns ReLU networks. The results are stated informally.

For any line segment through input space, the average number of
regions intersected is linear, and not exponential, in the number of
neurons.

Both the number of regions and the distance to the nearest region
boundary stay roughly constant during training.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 21 / 29

Expressibility vs. Learnability: Theorems

The following is from the work of Hanin and Rolnick (2019ab), and
concerns ReLU networks. The results are stated informally.

For any line segment through input space, the average number of
regions intersected is linear, and not exponential, in the number of
neurons.

Both the number of regions and the distance to the nearest region
boundary stay roughly constant during training.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 21 / 29

Expressibility vs. Learnability: Theorems

The following is from the work of Hanin and Rolnick (2019ab), and
concerns ReLU networks. The results are stated informally.

For any line segment through input space, the average number of
regions intersected is linear, and not exponential, in the number of
neurons.

Both the number of regions and the distance to the nearest region
boundary stay roughly constant during training.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 21 / 29

Expressibility vs. Learnability: Graphs

(a) Over Epochs (b) Over Test Accuracy

Figure: Normalization by squared number of neurons

Across di↵erent networks, number of piecewise linear regions is
O(n2), and this doesn’t change with greater depth.
Upshot: empirical success of depth on certain problems is not because
deep nets learn a complex function inaccessible to shallow networks.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 23 / 30

Expressibility vs. Learnability: Graphs

(a) Over Epochs (b) Over Test Accuracy

Figure: Normalization by squared number of neurons

Across di↵erent networks, number of piecewise linear regions is
O(n2), and this doesn’t change with greater depth.

Upshot: empirical success of depth on certain problems is not because
deep nets learn a complex function inaccessible to shallow networks.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 23 / 30

Expressibility vs. Learnability: Graphs

(a) Over Epochs (b) Over Test Accuracy

Figure: Normalization by squared number of neurons

Across di↵erent networks, number of piecewise linear regions is
O(n2), and this doesn’t change with greater depth.
Upshot: empirical success of depth on certain problems is not because
deep nets learn a complex function inaccessible to shallow networks.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 23 / 30

Bridging the Gap

Two next questions (in context of ReLU networks):

Are networks that learn an exponential number of linear regions
”usable”, or are they purely a theoretical guarantee?

How can we adjust the traditional deep learning pipeline to allow
learning of piecewise linear functions in the exponential regime?

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 24 / 29

Bridging the Gap

Two next questions (in context of ReLU networks):

Are networks that learn an exponential number of linear regions
”usable”, or are they purely a theoretical guarantee?

How can we adjust the traditional deep learning pipeline to allow
learning of piecewise linear functions in the exponential regime?

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 24 / 29

Bridging the Gap

Two next questions (in context of ReLU networks):

Are networks that learn an exponential number of linear regions
”usable”, or are they purely a theoretical guarantee?

How can we adjust the traditional deep learning pipeline to allow
learning of piecewise linear functions in the exponential regime?

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 24 / 29

Sawtooth functions/triangular wave functions

Type of function that achieves an exponential number of regions in
number of nodes/depth.

(a) No Perturbation (b) Random Perturbation

Figure: Sawtooth functions

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 25 / 29

Sawtooth functions as feedforward neural networks

To achieve a feedforward neural network that represents a sawtooth
function with 2n a�ne regions in 2n hidden layers:

Mirror map, defined on [0, 1]:

f(x) =

(
2x when 0  x  1

2

2(1� x) when 1
2  x  1

As a two-layer neural network:

f (x) = ReLU(2ReLU(x)� 4ReLU(x � 1
2))

Composing mirror map with itself n times will yield a sawtooth
function with 2n equally spaced a�ne components on [0, 1].

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 26 / 29

Sawtooth functions as feedforward neural networks

To achieve a feedforward neural network that represents a sawtooth
function with 2n a�ne regions in 2n hidden layers:

Mirror map, defined on [0, 1]:

f(x) =

(
2x when 0  x  1

2

2(1� x) when 1
2  x  1

As a two-layer neural network:

f (x) = ReLU(2ReLU(x)� 4ReLU(x � 1
2))

Composing mirror map with itself n times will yield a sawtooth
function with 2n equally spaced a�ne components on [0, 1].

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 26 / 29

Sawtooth functions as feedforward neural networks

To achieve a feedforward neural network that represents a sawtooth
function with 2n a�ne regions in 2n hidden layers:

Mirror map, defined on [0, 1]:

f(x) =

(
2x when 0  x  1

2

2(1� x) when 1
2  x  1

As a two-layer neural network:

f (x) = ReLU(2ReLU(x)� 4ReLU(x � 1
2))

Composing mirror map with itself n times will yield a sawtooth
function with 2n equally spaced a�ne components on [0, 1].

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 26 / 29

Sawtooth functions as feedforward neural networks

To achieve a feedforward neural network that represents a sawtooth
function with 2n a�ne regions in 2n hidden layers:

Mirror map, defined on [0, 1]:

f(x) =

(
2x when 0  x  1

2

2(1� x) when 1
2  x  1

As a two-layer neural network:

f (x) = ReLU(2ReLU(x)� 4ReLU(x � 1
2))

Composing mirror map with itself n times will yield a sawtooth
function with 2n equally spaced a�ne components on [0, 1].

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 26 / 29

Questions regarding sawtooth functions

How robust are sawtooth functions to multiplicative weight
perturbation, of the form w(1 + ✏)? (The perturbations are
zero-mean Gaussians, and experiments changed the variance.)

Can randomly initialized or perturbed networks re-learn the sawtooth
function?

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 27 / 32

Perturbing the parameters

(a) All weights and biases (b) All weights

(c) All biases (d) First layer only

Figure: Another figure
Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 28 / 32

Re-learning sawtooth networks from di↵erent initializations

(a) Mean squared error (b) Number of linear regions

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 29 / 32

Re-learning sawtooth networks from di↵erent initializations

(c) Variance = 0.01 (d) Variance = 0.05

(e) Variance = 0.1 (f) Variance = 0.5

Figure: Another figure
Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 30 / 32

Implications

”Sawtooth networks” fall apart with mild variance on the weights.

Even when starting from perturbed versions of the original function,
the original sawtooth network is not retained, implying that the set of
parameters yielding exponential nets in the loss landscape is localized
and challenging to learn.

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 31 / 32

Learning functions in the exponential regime (sketch)

How to adjust the DL framework to encourage feedforward model to learn
functions currently in Fexpress \ Flearn?

First attempt: adding terms to the objective function to encourage
network to learn more complex functions (”anti-regularization”)

For 2D input, two hidden-layer ReLU nets, can think about
encouraging all hyperplanes/bent hyperplanes to intersect:

Can think of an inactive ReLU activation function as replacing
appropriate column of outer weight vector by zeros

w2ReLU(W1x + b1) + b2 = w
0
2((W1x + b1) + b2)

For a first-layer activation pattern, this yields a square matrix equation
and a collection of inequalities, and one can add ”perceptron-like” error
terms to the objective function to encourage regions to intersect

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 29 / 30

Learning functions in the exponential regime (sketch)

How to adjust the DL framework to encourage feedforward model to learn
functions currently in Fexpress \ Flearn?

First attempt: adding terms to the objective function to encourage
network to learn more complex functions (”anti-regularization”)

For 2D input, two hidden-layer ReLU nets, can think about
encouraging all hyperplanes/bent hyperplanes to intersect:

Can think of an inactive ReLU activation function as replacing
appropriate column of outer weight vector by zeros

w2ReLU(W1x + b1) + b2 = w
0
2((W1x + b1) + b2)

For a first-layer activation pattern, this yields a square matrix equation
and a collection of inequalities, and one can add ”perceptron-like” error
terms to the objective function to encourage regions to intersect

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 29 / 30

Learning functions in the exponential regime (sketch)

How to adjust the DL framework to encourage feedforward model to learn
functions currently in Fexpress \ Flearn?

First attempt: adding terms to the objective function to encourage
network to learn more complex functions (”anti-regularization”)

For 2D input, two hidden-layer ReLU nets, can think about
encouraging all hyperplanes/bent hyperplanes to intersect:

Can think of an inactive ReLU activation function as replacing
appropriate column of outer weight vector by zeros

w2ReLU(W1x + b1) + b2 = w
0
2((W1x + b1) + b2)

For a first-layer activation pattern, this yields a square matrix equation
and a collection of inequalities, and one can add ”perceptron-like” error
terms to the objective function to encourage regions to intersect

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 29 / 30

Learning functions in the exponential regime (sketch)

How to adjust the DL framework to encourage feedforward model to learn
functions currently in Fexpress \ Flearn?

First attempt: adding terms to the objective function to encourage
network to learn more complex functions (”anti-regularization”)

For 2D input, two hidden-layer ReLU nets, can think about
encouraging all hyperplanes/bent hyperplanes to intersect:

Can think of an inactive ReLU activation function as replacing
appropriate column of outer weight vector by zeros

w2ReLU(W1x + b1) + b2 = w
0
2((W1x + b1) + b2)

For a first-layer activation pattern, this yields a square matrix equation
and a collection of inequalities, and one can add ”perceptron-like” error
terms to the objective function to encourage regions to intersect

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 29 / 30

Learning functions in the exponential regime (sketch)

How to adjust the DL framework to encourage feedforward model to learn
functions currently in Fexpress \ Flearn?

First attempt: adding terms to the objective function to encourage
network to learn more complex functions (”anti-regularization”)

For 2D input, two hidden-layer ReLU nets, can think about
encouraging all hyperplanes/bent hyperplanes to intersect:

Can think of an inactive ReLU activation function as replacing
appropriate column of outer weight vector by zeros

w2ReLU(W1x + b1) + b2 = w
0
2((W1x + b1) + b2)

For a first-layer activation pattern, this yields a square matrix equation
and a collection of inequalities, and one can add ”perceptron-like” error
terms to the objective function to encourage regions to intersect

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 29 / 30

Conclusion

Thank you for listening!

Ryan Jeong, Will Barton, Maricela Ramirez (Summer@ICERM)DNN: Final Presentation June-July 2020 29 / 29

	Deep Learning/Neural Networks Fundamentals
	Universal Approximation Results with Neural Nets
	Piecewise Linear Networks
	On Expressivity vs. Learnability

