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Introduction

The Singular Value Decomposition

An incredibly important matrix decomposition in linear algebra

Has applications in many different domains

What we will cover

Image, video, audio processing

Data analysis

Digital ownership protection
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Singular Value Decomposition

Singular Value Decomposition

Amxn = UmxmΣmxnV
>
nxn

U and V are orthogonal matrices, Σ is a diagonal matrix with
positive diagonal entries σ1 ≥ σ2 ≥ ... ≥ σr , and r = rank(A).
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Singular Value Decomposition

Eckart-Young Theorem

If B has rank k then ‖A− B‖ ≥ ‖A− Ak‖
A = UΣV> = σ1u1v

>
1 + σ2u2v

>
2 + σ3u3v

>
3 + ...+ σrurv

>
r

Ak is the first k matrices added together for k < r

The closest rank k matrix to A is Ak

Example

A =

 | | |
u1 u2 u3
| | |

σ1 0 0
0 σ2 0
0 0 σ3

— vT1 —
— vT2 —
— vT3 —


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A =

 | | |
u1 u2 u3
| | |

σ1 0 0
0 σ2 0
0 0 σ3
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T
1 + σ2u2v

T
2 + σ3u3v

T
3
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Singular Value Decomposition

Eckart-Young Theorem

If B has rank k then ‖A− B‖ ≥ ‖A− Ak‖
A = UΣV> = σ1u1v

>
1 + σ2u2v

>
2 + σ3u3v

>
3 + ...+ σrurv

>
r

Ak is the first k matrices added together for k < r

The closest rank k matrix to A is Ak

Rank 2 Approximation

A2 =

 | |
u1 u2
| |

 ïσ1 0
0 σ2

ò ï
— vT1 —
— vT2 —

ò
= σ1u1v

T
1 + σ2u2v

T
2
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Randomized SVD

Randomized SVD Algorithm

Uses a random projection matrix to sample the column space
of the original matrix

Allows us to approximate the SVD of the original matrix by
computing SVD on smaller matrix
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Randomized SVD

Figure from Data-Driven Science and Engineering by Steven
Brunton and Nathan Kutz
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Converting Color Images to Matrices

Color Stacking

Just like how a black-and-white image can be represented as a
matrix of values between 0 and 1, color images can be
represented as the combination of three matrices (color
channels)

We can take these channels apart, stack them, and then
compute their SVD

SVD!
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Image Compression

Original SV Log Plot

Rank 50 Rank 25 Rank 10 Rank 5
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Modifying Singular Values

What happens if we try to modify the singular values?
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Modifying Singular Values
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Modifying Singular Values

Can also be applied to audio, video matrices
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Video Compression

Video → Matrix

Video is a sequence of pictures

reshape each frame of picture as a long matrix

reshape a video into a skinny tall matrix

Low rank approximations of surveillance video

For rank r ≤ 10, only the most dominant features in every
frame of image is captured

The lower the rank, the less moving objects captured

More blurry for shaky videos
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Video Background Extraction
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Audio Compresssion

Representing Audio as a Signal

Audio is represented as a waveform - a function of wave
height over time

On the computer, we need to represent them discretely by
sampling the waveform in fixed time steps.
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Audio Compresssion

Representing Audio as a Signal

Audio is represented as a waveform - a function of wave
height over time

On the computer, we need to represent them discretely by
sampling the waveform in fixed time steps.

[10, 20, 8, 22, 40, 50, 38, . . . ]
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Audio Compression

Fourier Transform

Represents the average frequency content of a signal over its
duration

The Fourier transform gives us another 1D array representing
the weight of each frequency in the overall signal

Short-Time Fourier Transform

Takes the Fourier transform of small “windows” of the signal

Puts the resulting spectra in columns of a matrix

Katie Keegan, David Melendez, Jennifer Zheng



Short-Time Fourier Transform
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Short-Time Fourier Transform
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Short-Time Fourier Transform
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Short-Time Fourier Transform
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Short-Time Fourier Transform
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Audio Demo

Low-rank Approximation of Audios

Rank 118 Rank 25 Rank 5
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Singular Value Modification on Audios

Multiply σ by some scalar p

p = 4 p = 2 p = 0.5
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Singular Value Modification on Audios

Raise σ to some exponent n

n = 2 n = 1.5 n = 0.7
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Data Analysis

USA Facts Data Set

Provides data on cumulative new deaths and cases reported
for each county in the United States since January 22

Can be reformatted to provide information about new
deaths/cases reported per day, per state, etc.

Relies on daily government-reported data, so cumulative
numbers fluctuate (some days have negative numbers)

Snippet of Data

State County 7/1/20 7/2/20 7/3/20 7/4/20 7/5/20

FL Alachua 1245 1332 1423 1506 1578
FL Baker 72 80 84 98 105
FL Bay 408 581 625 684 713
FL Bradford 84 89 92 94 95
FL Brevard 1962 2180 2366 2453 2521

Katie Keegan, David Melendez, Jennifer Zheng



Cumulative Known COVID-19 Deaths Nationwide

The Data

Cumulative known COVID-19 deaths each day in each of the
50 states plus Washington DC

February 6, 2020 to July 5, 2020

Data Matrix: 51 states × 166 days
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Cumulative Known COVID-19 Deaths Nationwide

Scree Plot

a line plot of the eigenvalues of factors or principal
components

used to determine an “appropriate” number of PC
components
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New COVID-19 Cases Nationwide

The Data

New known COVID-19 Cases each day in each of the 50
states plus Washington DC

January 22, 2020 to July 12, 2020

Data Matrix: 51 states × 173 days

The Method

Take SVD: X = UΣV T = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σrurv

T
r

Look at SV spectrum

Plot most dominant rank 1 components σ1u1v
T
1 , σ2u2v

T
2 , etc
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New COVID-19 Cases Nationwide
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New COVID-19 Cases Nationwide - SV2
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Florida COVID-19 Data

The Data

Log cumulative known COVID-19 cases each day in each
Florida county

January 22, 2020 to July 12, 2020

Data Matrix: 68 counties × 173 days

Katie Keegan, David Melendez, Jennifer Zheng



Florida COVID-19 Data

SVD Plots: Log Cumulative Known FL COVID-19 Cases
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Watermarking

Digital Ownership Protection

How can we verify the owner of a piece of media?

Hide a watermark inside the media

Concerns:

Perceptibility
Security
Robustness against distortions
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Liu & Tan Watermarking Scheme

Embedding

A→ USV>

W → UWSWV>W
S + αW → USS

′V>S
AW ← US ′V>

Save US ,VS ,S for
extraction

Extraction

Given ÃW , US , VS , S , α

ÃW → US ′V>

Note USS
′V>S = S + αW

Then
W̃ = α−1(USS

′V>S − S)
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Given ÃW , US , VS , S , α
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Liu & Tan Watermarking Scheme

Watermarking Examples

Image Watermark

α = 1 α = 0.5 α = 0.25 α = 0.1
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Liu & Tan Watermarking Scheme

Audio Watermarking Examples

Original Watermark

α = 0.1 α = 0.4 α = 1.6
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Liu & Tan Watermarking Scheme

Audio Watermarking With Distortions

Lower Pitch Frequency remove noise Add reverb
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Liu & Tan Watermarking Scheme

Security Test

Embed watermark W into A to obtain AW

Attempt to extract phony watermark X from AW

Image Watermark Phony

Watermarked
Image

Watermark
Extracted

Phony
Extracted

Katie Keegan, David Melendez, Jennifer Zheng



Liu & Tan Watermarking Scheme

Security Test

Embed watermark W into A to obtain AW

Attempt to extract phony watermark X from AW

Image Watermark Phony

Watermarked
Image

Watermark
Extracted

Phony
Extracted

Katie Keegan, David Melendez, Jennifer Zheng



Liu & Tan Watermarking Scheme

Security Test

Embed watermark W into A to obtain AW

Attempt to extract phony watermark X from AW

Image Watermark Phony

Watermarked
Image

Watermark
Extracted

Phony
Extracted

Katie Keegan, David Melendez, Jennifer Zheng



Liu & Tan Watermarking Scheme

Security Test

Embed watermark W into A to obtain AW

Attempt to extract phony watermark X from AW

Image Watermark Phony

Watermarked
Image

Watermark
Extracted

Phony
Extracted

Katie Keegan, David Melendez, Jennifer Zheng



Jain et el. Watermarking Scheme

Modification to Liu & Tan scheme

Improved security

Embedding

A→ USV>

W → UWSWV>W
S1 ← S + αUWSW

AW ← US1V
>

(AW = A + αUUWSWV>)

Extraction

Given ÃW , A, VW

AW = A + αUUWSWV>

Solve for W !

W̃ ← α−1U>(ÃW −A)VV>W
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Improved security

Embedding
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Jain et al. Watermarking Scheme

Watermarking Examples

Image Watermark

α = 0.5 α = 0.25 α = 0.1 α = 0.01
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Jain et al. Watermarking Scheme

Security Test

Image Watermark Phony

Watermarked
Image

Watermark
Extracted

Phony
Extracted
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Jain et al. Watermarking Scheme

Extraction after Compression

Image

Watermark

Rank 100

Extracted

Rank 10

Extracted

Rank 1

Extracted
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Modified Jain et al. Watermarking Scheme

A = USV>

W = UWSWV>W

Embedding Extraction
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Modified Jain et al. Watermarking Scheme
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Modified Jain et al. Watermarking Scheme

Watermarking Examples

Image

Watermark

Jain, α = 0.5

Mod, α = 0.5

Jain, α = 0.25

Mod, α = 0.25

Jain, α = 0.1

Mod, α = 0.1
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Modified Jain et al. Watermarking Scheme

Evaluating Watermarked Image vs Original Image

‖A− AJain‖F = ‖A− AMod‖F = α ‖W ‖F

corr(A,AW ) =
〈A,AW 〉F
‖A‖F ‖AW ‖F

= cos(∠(A,AW ))
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Modified Jain et al. Watermarking Scheme

Security Test

Image Watermark Phony

Watermarked
Image

Watermark
Extracted

Phony
Extracted

Katie Keegan, David Melendez, Jennifer Zheng



Modified Jain et al. Watermarking Scheme

Extraction after Compression

Image

Watermark

Rank 100

Extracted

Rank 10

Extracted

Rank 1

Extracted
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Conclusion

Summary

Media Compression and Processing

Data Analysis

Digital Ownership Protection

Modified Watermarking Scheme

Future Directions

Video background removal

Modern watermarking algorithms

Audio watermarking

Randomized watermark extraction
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THANK YOU!
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