
BROWN UNIVERSITY
SUMMER@ICERM
Providence (RI) USA

Project

Randomized Singular Value Decomposition and its
Applications

Authors:

Katherine Keegan

David Melendez

Jennifer Zheng

Primary Advisor:
Minah Oh

Secondary Advisor:
Akil Narayan

Teaching Assistants:

Justin Dong
Alexandru Mihai

Summer 2020
Report



Abstract

The singular value decomposition, or the SVD, was first discov-
ered independently by Eugenio Beltrami and Camille Jordan in the
1870s as they were tackling problems related to bilinear forms in lin-
ear algebra. Since then, it has become one of the most useful tools
in linear algebra, seeing applications in widely disparate fields. In
this report, we introduce applications of the SVD in image, video,
and audio processing, data analysis, and digital ownership protection.
We provide several examples illustrating applications and properties
of the SVD, including image and audio compression, image and au-
dio processing, video background extraction, analysis of data from
the SARS-CoV-2 pandemic, and watermarking for digital ownership
protection. Finally, we propose a modified version of a watermarking
scheme introduced in [10, 13] which offers improved robustness and
imperceptibility properties.
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1 Introduction

The singular value decomposition(SVD) was discovered in the 1870s by Eu-
genio Beltrami and Camille Jordan independently while they were studying
problems related to bilinear forms in linear algebra. Since then, the SVD
has become one of the most important tools in linear algebra, seeing applica-
tions in widely disparate problem domains including media processing, data
analysis, and digital ownership protection.

Low-rank approximations using the SVD preserve the most dominant
features of the media and effectively compresses other information. By mod-
ifying the singular values of the media matrix, we can also modify certain
characteristics of the media. The method is also proved to be the closest
low-rank approximation by the Eckart-Young Theorem.

SVD-based analysis is also effective in determining trends or important
features in data as we apply it onto the COVID-19 dataset. Each singular
vector corresponds to a certain pattern of the dataset and can group ob-
servations into clusters base on the different trends as we plot the singular
vectors.

In the application of steganography, and in particular digital ownership
protection, SVD allows us to embed and extract one media into another with
low perceptibility. For image watermarking, we conduct numerical experi-
ments testing the performance of two different algorithms from Liu & Tan[13]
and Jain et al.[10]. As one is robust but not secure and the other one is secure
with low imperceptibility, we make modifications to the Jain et al. scheme
and present a secure algorithm with better robustness.

The rest of our report will present our work as follows. In Section 2, we
review the SVD and its computation. In Section 3, we introduce our method-
ology in each of the three applications we work on. In Section 4, we present
our results and the corresponding numerical experiments for the specific ap-
plications. In Section 5, we conclude our work with a short discussion of the
future directions.
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2 Background

2.1 Singular Value Decomposition

The SVD is closely related to the eigenvalue decomposition (EVD): given an
n× n matrix X, there exists an orthogonal matrix P and a diagonal matrix
D such that X = PDP−1. In EVD, the columns of P are eigenvectors of X
that form an orthonormal basis for Rn, and the diagonal entries of D contain
the corresponding eigenvalues[11]. However, EVD can only be performed on
diagonalizable symmetric square matrices, thus to generalize the EVD, we
have the SVD.

According to the definition of SVD, any m×n matrix A with rank r can
be decomposed into

Am×m = Um×mΣm×nV
>
n×n,

where U and V are orthogonal matrices, and Σ is a diagonal matrix with
ordered positive diagonal entries σ1 ≥ σ2 ≥ ... ≥ σr, called the singular
values of A. The rest of the diagonal entries of A are zero. The columns of
U and V are called the left and right singular vectors of A respectively.

Computing the SVD consists of finding the eigenvalues and eigenvectors
of AA> and A>A. Since AA> is a square matrix, we can perform EVD and
let A>A = PDP>. The eigenvectors of A>A, which are the columns of P
would then make up the columns of V , the diagonal entries of D consists of
the squared singular value of A, and similarly the eigenvectors of AA> would
make up the columns of U .

2.2 Eckart-Young Theorem

An important application of the SVD is in approximating matrices. For an
m× n matrix A with rank r, we take each left and right singular vector and
the corresponding singular value to factor A as

A = UΣV > = σ1u1v
>
1 + σ2u2v

>
2 + σ3u3v

>
3 + ...+ σrurv

>
r

using the SVD. Let Ak be the sum of the first k terms in the previous factor
form for k ≤ r. According to the Eckart-Young Theorem, for any B with
rank k, we have

‖A−B‖F ≥ ‖A− Ak‖F .
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This also holds true for

‖A−B‖L2 ≥ ‖A− Ak‖L2 .

In other words, Ak is the closest rank k approximation to A.

2.3 Randomized SVD Algorithms

2.3.1 Randomized SVD

For very large matrices, directly computing the deterministic SVD of a matrix
becomes computationally expensive. To combat this challenge, the Random-
ized SVD algorithm can be used to significantly speed up computation.

Let A be a real m×n matrix where m >> n. We can construct a random
projection matrix P of size n×r, where r is the target rank. For intrinsically
low rank matrices, we can use a smaller value of r [8]. which will allow us to
sample the column space of A. By multiplying A by this random projection
matrix, we produce AP = Z, giving us a smaller matrix Z that has a high
probability of retaining the same column space as our original matrix X.

We can then compute a QR factorization on Z, giving us an orthonormal
basis for the column space of Z and thus an approximate orthonormal basis
for the column space of A.

Afterwards, we use our original matrix A again by computing Y = QTA.
Finally, we directly compute the SVD on this much smaller matrix Y. The
singular values and right singular vectors of Y are highly likely to approximate
those of X, giving us

Y = UYΣYVT
Y = UYΣVT.

As our last step in this algorithm, we compute UA = QUY to obtain the
left singular values for A. This gives us a low rank r SVD approximation for
A:

A = UAΣVT

In order to increase the accuracy, we can specify a small oversampling
parameter p. Using this parameter, we add p extra columns to our random
projection matrix P. Even with very small values of p, including some over-
sampling greatly improves this algorithm. This topic is further explained in
[8].
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2.3.2 Compressed SVD

The compressed SVD, proposed in [9], is another randomized SVD algorithm
that combines the idea of the randomized SVD (Section 2.3.1) with ideas from
compressed sensing, providing us with an algorithm that performs very well
in image processing applications.

Suppose we want to compute a rank k approximation of an m×n matrix
A. The first step, similar to the randomized SVD, is to sample the column
space of A. We choose an oversampling parameter p, let l = k + p, generate
a (sparse) random l×m matrix Φ, and put Y = ΦA. Since the columns of Y
are vectors randomly sampled from the column space of A, we have in high
likelihood that the column space of Y is a decent low-rank approximation
for the column space of A. Thus, to approximate the right singular vectors
V of A, we compute the SVD of Y .

Compute the SVD of Y to obtain Y = ŨΣ̃Ṽ >., where we truncate to
include only the first k singular vectors and their singular values. Compute
the SVD of AṼ as AṼ = UΣQ>, and let V = Ṽ Q. The rank k approximation
of A is then given by A ≈ UΣV >.

For more details, see [9].

2.4 Principal Component Analysis

One of the most useful applications of the SVD is principal component analy-
sis, or PCA. Principal component analysis is a dimension reduction technique
which selects the directions in which the data has the most variance. In this
sense, PCA is optimal in how much information it captures for any given
dimension. The next paragraph describes the procedure for performing PCA
on a data matrix using an eigenanalysis.

Let X be an m×n data matrix representing n observations, each of which
contain m variables. Assume X is centered by column means, so that the
mean of each variable across all observations is 0. If X is not column centered,
we may replace X =

[
x1 x2 · · · xn

]
with

[
x1 − µ1 x2 − µ2 · · · xn − µn

]
,

where µi is the mean of x1. Then, we are interested in the covariance matrix
XX>. Note that XX> is a symmetric, positive-semidefinite matrix, and so
there exists an orthogonal eigendecomposition XX> = PDP>, where P =[
u1 u2 · · · um

]
is orthogonal and D = diag(λ1, λ2, . . . , λm) is diagonal.

Assume that the entries in D are arranged such that λ1 ≥ λ2 ≥ · · · ≥ λr,
and note that all of these are nonnegative. Then the principal components
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are u1, . . . , um, and the variances captured by these principal components are
proportional to their corresponding eigenvalues.

Interestingly, it is possible to perform PCA on a matrix without comput-
ing the covariance matrix. Let X be our matrix as above, and let UΣV > be
its singular value decomposition. Then the covariance matrix of X is

XX> = (UΣV >)(UΣV >)>

= UΣV >V Σ>U>

= UΣΣ>U>

= UΣ2U>,

since Σ is a diagonal, self-adjoint matrix. This is exactly the eigendecom-
position of XX>—the principal components are the left singular vectors ui,
and the eigenvalues of the covariance matrix are the squares of the singular
values λi = σ2

i . Thus, one can perform a principal component analysis on
a matrix by computing the singular value decomposition of the matrix and
taking the left singular vectors.

In some situations, we may not know whether it is more useful to think
of the “observations” in our data matrix as being in the rows or in the
columns. In these situations, we may perform two separate PCAs on the
matrix, one with row-mean centering and column-mean centering, and see
which one offers the best interpretability in the context of the data. This is
a consideration we make when using SVD techniques to analyze COVID-19
data in Section 4.3.

Zhang et al. provide an in-depth analysis of how using four different mean
centering methods on the data matrix provide varying levels of complexity,
performance interpretability, etc. in [16]. Our analyses in Section 4.3 utilize
either the simple SVD with no mean centering (SSVD) or centering around
the column means (CSVD). Other centering methods include row centering
(RSVD) and double centering (DSVD), the latter of which involves centering
using both the row and column means.

As an example, we use a data matrix in Section 4.3.2 in which the columns
are days since January 22 and the rows are states, and the entries are new
cases. For this specific data matrix, row mean centering would involve center-
ing each day’s new case count by the average new case count for all states on
that particular day, while column mean centering would center each state’s
daily new case count around the average new case count for that particular
state.
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3 Methodology

In order to perform matrix computations on data D, it is necessary to repre-
sent the data as a matrix. IfM is a transformation mapping D to its matrix
form D, then we can perform a matrix operation f on D to produce the new
data f(D) as follows:

D D f(D) f(D)M f M−1

(1)

This is the general framework we follow when applying matrix computa-
tions to image, video, and audio media. In the following sections, we describe
these transformations M for images, audio, and video, and thereafter make
implicit use of (1) when appropriate. In addition, we describe the procedures
involved in various applications of the SVD to image and video processing
(3.1), audio processing (3.2), data analysis (3.3), and watermarking (3.4).

3.1 Image and Video Processing

3.1.1 Matrix Representation for Images and Videos

A grayscale image of size m×n is represented by an m×n array of luminosity
values and can be operated on directly. A color image is represented by a
m × n × c array, where c is 3 or 4 which can be thought of as an m × n
array of c-tuples representing the red, green, and blue, and potentially alpha
components of each pixel. Such a color image is represented by a m × 3n
matrix, produced by “stacking” the color channels.

A video can be thought of as an array of k images, each of which is
represented by an m× n× c array, where c is the number of color channels.
Such a video can be represented as a cmn × k matrix, where each of the k
columns is a “flattened” image.

Both of these procedures are visualized in Figure 1
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(a) Color video

1
2

3

1 2 3

(b) Video

Figure 1: Matrix representation of images and videos

3.1.2 Image Compression

The Eckart-Young Theorem provides us with a remarkably simple image
compression algorithm: Simply use a low-rank approximation of your image,
computed using randomized algorithms if more speed is necessary. The only
complication here is that one must choose the rank of the approximation,
and the desirable choice varies with the complexity of the image. Since the
error in a rank k approximation Ak of a matrix A depends on the singular
value distribution of A−Ak, or equivalently the singular values σk + 1, σk +
2, · · · , σr of A, one may use the singular value distribution of A to choose an
appropriate approximation rank.

One method for choosing an approximation rank is using a “ratio” 0 <
ρ < 1 of the rank of A. For example, if ρ = 1/2 and rankA = 200, then we
would use a rank 100 approximation of A. One advantage to this method is
that it selects higher ranks for images of higher ranks. A significant disad-
vantage, however, is that it it blind to the singular value distribution of A,
leading to undesirable accuracy if A has high intrinsic rank or an unneces-
sarily high selected rank if A has low intrinsic rank.

A more sophisticated method is to select the smallest rank k such that
‖Ak‖ / ‖A‖ surpasses some minimum value ρ, using your desired norm. In
the nuclear norm, this is the minimum k such that σ1+···+σk

σ1+···+σr ≥ ρ. The ad-
vantage to this approach is that with fixed α, the approximation error will
be somewhat consistent regardless of the image used and its singular value
spectrum. The disadvantage is that this requires computing at least the first
k singular values of A, where k is unknown, making the use of randomized
algorithms for efficiency improvements difficult.
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3.1.3 Modifying Singular Values

Modifying the singular values of a matrix by executing some mapping, such
as a logarithmic transformation or multiplication by a scalar, preserves some
general characteristics within the data while distorting others.

One modification we use simply involves scaling the singular values by
some scalar. We also add or subtract a scalar to each of the singular values,
raise each singular value to some exponent, and compute the mapping log(σ+
1)p on each singular value.

When modifying image matrices, computing the above logarithmic map-
ping appears to have the effect of making specific parts of the image more
vibrant while making other less important parts of the image white. We can
experiment with this by assigning each of the non-white pixels some scaling
value s and assigning all white pixels a value of 1. We then multiply the
pixels in the original image based on each pixel’s corresponding value in the
modified image. In effect, this allows us to accentuate the specific parts of
the image highlighted in the modified image while keeping everything else
the same, with the intention of highlighting important parts of the image.

As a brief technical description, this process is accomplished using Python
code by reshaping our original image of the cat as one long column vector
as well as the modified image. If a pixel in the reshaped modified image is
equal to 0, we set it to 1, while if it is equal We then multiply each value
in the original photo column vector by its corresponding value (1 or s) in
the scaling matrix (i.e. similarly shaped as a long column). Finally, we
reconstruct an image from this matrix. This produces an interesting effect
on our reconstructed image, as is displayed and discussed in (4.1.3).

For matrices representing video files, the effects of singular value mod-
ifications are slightly different. Since we are essentially stacking all of the
frames in our matrix instead of only the color channels of a single image,
modifying the singular values of a video matrix doesn’t have the same effect
as computing an identical mapping on an individual frame from the video.

We experiment with various such mappings for audio and image matrices
in Sections 4.2.2 and 4.1.3.
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3.2 Audio Processing

3.2.1 Matrix Representation for Audio

Mono audio signals, in their raw form, come in as an array of N points
sampled with frequency fs (typically 44 100 Hz). To convert audio signals
into matrices, we use the Short Time Fourier Transform (STFT), which is
a time-frequency analysis technique. The output is a rectangular matrix
where, roughly speaking, the entry in position (f, t) is a complex number
which describes the amplitude and phase of frequency f at time t. For
visualization, a spectrogram can be obtained from the STFT of a signal by
plotting the magnitude squared of the entries of the STFT.

Figure 2 displays an example audio signal and its associated spectrogram.

(a) Audio signal (b) Spectrogram

Figure 2: An audio signal and its spectrogram

In particular, we use a Short Time Fourier Transform (STFT) with win-
dow size 256 and shift 128 to convert audio signals into matrices. For more
information on the STFT, see [12].

3.2.2 Singular Value Modification for Audio

Modifying the singular values of the matrix representation for audio results in
interesting changes in certain aspects of the audio, specifically amplitude and
noise levels. We perform SVD on an audio matrix, and modify the diagonal
entries of Σ.

Our experiment consists of two methods. The first is linear scaling by
some scalar p. We take each singular value and multiply them by a positive
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number p with p ranging from 0.5 to 4. The second method is exponential
scaling by some scalar e. We raise each singular value to the e-th power.
After the modifications on Σ, we reform the matrix by multiplying UΣ∗V >.

As U and V remain the same, the most dominant features of the audio
are still preserved in the left and right singular vectors. The output audio
will thus have the same melody line with modified amplitude and/or noise
levels.

3.3 Data Analysis: COVID-19

3.3.1 Scree Plots

Before performing SVD on our datasets, we first need to determine the prin-
cipal components to use, which is evaluated through scree plots.

A scree plot is a visual aid to determine the appropriate centering and
the number of components [16] and shows the residual proportion of each
principal component. As singular values compute variance explained by each
singular vectors, one way to plot the scree plot is by showing the percentage
of the singular value over the sum of all singular values, which produces the
bar graph below.

Figure 3: Scree Plot of Cumulative Deaths Nationwide

In the example scree plot, more than 99% of the variances are explained by
the first three singular vectors, so we can perform analysis on those singular
vectors in later steps.
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3.3.2 Scatter Plots of Principal Components

In our data matrix, each row represents an observation, and each column
represents an index of the observation. Plotting the most dominant left
singular vectors and projecting the data matrix onto the most dominant
right singular vectors are both very useful in identifying the outliers among
the row observations.

By performing SVD on the data matrix, we have matrix U containing
the left singular vectors, Σ containing the singular values, and V containing
the right singular vectors. According to the scree plot of the data matrix,
the first three singular vectors cover most of the variances, so we produce a
scatter plot with the three axis being the first three columns of U . As each
point represents one state, the 3-D scatterplot puts all states into clusters by
their most dominant features in the dataset, and similarly a 2-D scatterplot
projected onto the first two columns of U produces a similar plot with one
less feature.

As the left singular vectors contain the dominant features of each row
observation, plotting the right singular vectors will give us the general trend.

It is also useful to add a grouping variable onto the scatterplot. By color
coding the different rwo observations, we can see the correlation between the
coded variable and the general observed trend.

3.3.3 Rank 1 Outer Product Plots

Recall that the SVD of a matrix can be written as a sum of scaled rank
one outer products of the left and right singular vectors: X = UΣV > =
σ1u1v

>
1 + σ2u2v

>
2 + · · · + σrurv

>
r , where r = rankX. Another useful way to

analyze a set of data is to look at the individual rank one components uiv
>
i .

The idea is that the first rank one component u1v
>
1 should represent the most

dominant feature or trend in the data, the second component u2v
>
2 should

show up the second most dominant feature or trend, and so on.
In Section 4.3.2, we use this method to analyze COVID-19 cases and

deaths across all 50 states and Washington, DC. Similarly, in Section 4.3.3,
we use this technique the analyze the trend of COVID-19 cases and deaths
in Florida in response to actions taken by the government to close down and
open up facilities.

In Section 4.3.2, we also analyze surface plots representing these rank 1
matrices and attempt to explain what patterns these matrices are displaying
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in the data. This is done by comparing notable changes in the plots to
rankings and timelines provided by [5] and [4].

3.4 Watermarking

Another use for the SVD is in digital ownership protection. When digital
property like videos, photos, or music is being sent and shared through the
internet, it is often important to the owners of this property to be able
to embed some kind of mark into their media. This allows them to prove
ownership of the original media should the need arise.

To do this, various watermarking schemes have been developed which
utilize the SVD matrices and ”hide” some watermark within the original data.
We explore how some of these schemes address specific concerns, including
perceptibility (how different our watermarked media appears when compared
to the original media), security (whether our scheme can be manipulated by a
third party to fake ownership), and robustness against distortions, attacks, or
data compression. We also briefly discuss extraction error and how various
scaling factors used while embedding a watermark have a small effect on
accuracy during the extraction process.

In general, a watermarking scheme works as follows: after choosing some
real number α > 0 which determines the “intensity” with which the water-
mark is embedded, we use a watermarking embedding function E to embed a
watermark matrix W into a matrix A, giving us E(A,W,α) = (AW , K)—the
watermarked matrix and key, respectively. Given this key and a possibly
distorted watermarked matrix A∗W , we can extract the possibly distorted
watermark W ∗ using the extraction function E−1(A∗W , K, α) = W ∗.

3.4.1 Liu & Tan Watermarking Scheme

The Liu & Tan watermarking scheme, described in great detail in [13], is
a widely-cited and foundational scheme in SVD-based watermarking tech-
niques. This method involves embedding a watermark into a matrix’s singu-
lar values and then computing this new matrix’s SVD as a means of embed-
ding information, as is outlined in the following steps:

1. A→ USV >

2. S + αW → UWSWV
>
W

15



3. AW ← USWV
>

4. K ← (S, UW , VW , α)

5. Return (AW , K)

This scheme relies on replacing the singular values of A with the singular
values of S + αW in order to reconstruct a watermarked piece of media.

In Section 4.1.3, we visually see how when the singular values are slightly
modified in some way, the major characteristics of an image are still pre-
served. The final step of the Liu & Tan embedding process is essentially
taking advantage of this useful aspect of the SVD.

The Liu & Tan scheme requires knowledge of UW , S, VW , and α, which
can be thought of as our keys to prove ownership.

To attempt to extract our watermark from a (possibly distorted) water-
marked image A∗W , we compute the following steps:

1. A∗W → U∗S∗WV
>

2. D∗ ← UWS
∗
WV

>
W

3. W ∗ ← 1
α

(D∗ − S)

While the Liu & Tan method is robust against certain distortions, there
are some security issues for watermark extraction using this scheme that are
improved upon in other schemes.

3.4.2 Jain et al. Watermarking Scheme

One issue with the Liu & Tan watermarking scheme, as we demonstrate in
Section 4.4.1, is that a good approximation of a watermark can be extracted
from an image even if it wasn’t embedded. This makes the watermarking
scheme insecure in that it is difficult to use to prove ownership.

In [10], Jain et al. propose a modification to the Liu & Tan watermarking
scheme, where instead of embedding the entire watermark in the singular
value matrix of an image, we only embed the principal components of the
watermark. If we want to embed a watermark W into a matrix A to obtained
the watermarked matrix AJ , we use the following scheme:

1. A→ USV >
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2. W → UWSWV
>
W

3. S1 ← S + αUWSW

4. AW ← US1V
>

5. K ← (A, VW , α)

6. Return (AW , K)

For an alternative perspective, note that

AW = US1V
>

= U(S + αUWSW )V >

= USV > + αUUWSWV
>

= A+ αUUWSWV
>.

Given the (possibly distorted) watermarked image A∗W , the original image
A, the right singular vectors VW of the watermark, and the scaling factor α,
we can extract the (possibly distorted) watermark W ∗ using

W ∗ ← α−1U>(A∗W − A)V V >W .

This alternative formulation of the Jain et al. watermarking scheme will be
useful to us.

3.4.3 Modification to the Jain et al. Watermarking Scheme

Here, we propose a modified watermarking scheme that preserves the de-
sirable properties (security and robustness to distortions) of the Jain wa-
termarking scheme while also increasing imperceptibility of the mebedded
watermark for a given scaling factor α. With notation as in Section 3.4.2,
the proposed watermarking scheme is as follows:

Watermark embedding is given by the following:

1. A→ USV >

2. W → UWSWV
>
W

3. AW ← A+ αUWSWV
>
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4. K ← (A, V, α)

5. Return (AW , K)

Watermark extraction is given by the following:

W ∗ ← (A∗W − A)V V >W
α

Notice that in the Jain et al. watermarking scheme, we add a scalar
multiple of the matrix UUWSWV

> to the original matrix A. In contrast,
in the modified Jain watermarking scheme, we add a scalar multiple of the
matrix UWSWV

> to A.

3.4.4 Evaluating Watermarking Schemes

In order for a watermarking scheme to be employable in proof of ownership,
it is vital that given a watermarked image AW , an adversary cannot produce
a phony original image Ap and watermark Wp such that the watermark W
can be extracted from A. A basic test of security, then, is given by the
following procedure, using an image A, two watermarks W1,W2, a watermark
embedding function E, and a watermark extraction function E−1:

1. W1, K1 ← E(A,W1, α)

2. W2, K2 ← E(A,W2, α)

3. W ∗
2 ← E−1(A1, K2)

4. Compare W ∗
2 to W2

In Section 4.4, we use this procedure to evaluate the basic security properties
of the watermarking schemes described in sections 3.4.1, 3.4.2, and 3.4.3.

4 Applications

4.1 Image and Video Processing

4.1.1 Image Compression

Although images often have hundreds of thousands of degrees of freedom in
their matrix representations, a reasonable approximation of the image can
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typically be obtained using much less information. In the language of linear
algebra, matrices representing images usually have low intrinsic rank. As
an example, Figure (4), displays various images along with their ranks and
singular value spectra.

(a) Rank 2 (b) Rank 250 (c) Rank 289 (d) Rank 300

Figure 4: Various images their ranks, and their singular value cumulative
sum (nuclear norm) plots

Notice that while adding noise to the checkerboard image (Figure 4b)
does increase its rank, the singular value spectrum shows us that most of
the variation in the image is still accounted for by the first two principal
components.

4.1.2 Video Background Extraction

A low-rank approximation can be used to extract the background from a
still video with moving subjects. Using the method described in Section 3.1,
we use a rank one approximation to extract the background from security
camera footage of a school. The result is shown in Figure 5.
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(a) Frame from school video (b) Background extracted using rank 1
approximation

Figure 5: Extracting the background from security camera footage

With this technique, the best results are achieved if the camera is still
and the background is static. In the case of the school video, the camera is
still and the only moving figures are the students.

4.1.3 Modifying Singular Values for Images

.
In this section, we explore the effect that various mappings on our sin-

gular values have on our reconstructed image. We use the public domain
chelsea.png cat image found in the Imageio standard images library [1].

Scaling the singular values by some factor c results in interesting modifi-
cations to our final image. Multiplying them by a positive number seems to
increase the brightness of the final image, while scaling them by a decimal
value between 0 and 1 darkens the final image. This is illustrated in Figure 6,
where each of the images are full-rank with only modifications to the singular
values.
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Figure 6: cσ Mapping

Similarly, we see in Figure 7 that adding or subtracting to the singular
values by large numbers results in significant changes in the final image color.

Figure 7: Adding to σ Mapping

Raising the singular values to some exponent n also has an effect. Values
greater than n ≈ 1.2 seem to result in singular values too far out of range to
yield anything other than a white block, but fine changes between n ≈ 1.05
and n ≈ 1.1 appear to modify the softness of the image. This is shown in
Figure 8.
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Figure 8: σn Mapping

To compare this mapping against other images, we include examples of 3
other photos with distinct subjects in Figure 9.

Figure 9: σn Mapping: Additional Examples

Another mapping function that can be used on the singular values is
log(σ + 1)p. While this does generate some noise, some of the final images
appear to be more vibrant, particularly for 4 ≤ p ≤ 5. This is shown in
Figure 10.
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Figure 10: log(σ + 1)p Mapping

Extending this further, we can compute the method described in Section
3.1.3 on our cat image, where we leave white pixels unchanged and assign
non-white pixels some scaling value to increase their effect when combined
with the original image. For example, for p = 9, the majority of the entries in
the matrix representing the image would have a value of 1. Various examples
of this process are seen in Figure 11. In the last two, the rank of the scaling
matrix was truncated at ranks 5 and 20, respectively.

Figure 11: Combined Mapping and Scaling Method

23



Note that taking the p = 6 singular value mapping and assigning each of
the non-255 elements a scaling value of s = 0.5 seems to accentuate certain
features of the image reconstruction.

Attempting this same mapping and modification with p = 6, s = 0.5 on
three additional personal images has different effects, as is shown in Figure
12. Note that while these effects are less pronounced for the left and center
images, applying this singular value modification on the right image causes
certain blocks to look unnaturally colored. Variation in the background and
subject matter appear to be significant in how the singular values should be
modified to sharpen/accentuate features.

Figure 12: Combined Mapping and Scaling Method: Additional Examples

This approach to making use of the modified singular value image is
not perfect. For example, when reshaping the modified image as a column
vector and reassign pixels values of 1 or s, we do not acknowledge how this
is technically only reassigning the red, green, or blue component of a specific
pixel.

Say we have a pixel in the original, unstacked image, and that its corre-
sponding pixel in the unstacked version of its logarithmic modified image has
positive values for both red and green, but a value of 0 for blue. Similarly,
imagine that another pixel on the original image has a corresponding mod-
ified pixel with only a positive value for red. When our combined mapping
and scaling method is applied, the first pixel will be scaled by 2s, while the
second will be scaled by s, even though they are both non-white and that
was the only parameter that we were initially trying to modify our image
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with. While this captures some variation between colors, it does so purely
based on color variation between red, green, and blue, and not on a spectrum
of intensity that would be more useful to us for image modification.

Similarly, when assigning each non-zero pixel in the stacked, modified
image a value of s, we completely discard any information about the variation
within the non-white regions. For example, consider the p = 9 example in
Figure 10. When completing our algorithm, we ignore how the non-white
region is darker for the pupil of the cat’s eye but less so for the surrounding
parts of the face. Even so, our algorithm essentially discards these differences
in intensity.

In the future, we can perhaps investigate how to capture the variation and
refine our algorithm by using a heat map or some other method to visualize
and develop a better . This can allow us to still use the information captured
by a reconstructed image from a logarithmic singular value mapping, while
better preserving the variation within image characteristics that this mapping
provides.

Adjusting and fine-tuning these singular value modification methods may
be useful for various means of photo editing, such as sharpening, softening,
or saturating.

4.2 Audio Processing

4.2.1 Audio Compression

Audio files are preserved in a different way compared to images, but they can
still be compressed using low rank approximation after being transformed
into a matrix by using STFT.
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(a) Original (b) Rank 25 (c) Rank 5

Figure 13: Low rank approximation of a spectrogram representing an audio
signals

We perform low-rank approximations on a news opening audio clip [2].
As observed in the spectrograms, the audio gets noisier when the rank is 5
while the rank 25 approximation gives a good approximation to the original
sound. The amplitude increases as rank decreases in the audio signal graph,
but changes in volumes are not much perceptible and covered by the noise
resulting from the approximation.

4.2.2 Modifying Singular Values for Audio

Using the method introduced in section 3.2.2, we modify singular values
by some scalar of the rank 25 approximation of the audio output from the
previous section.

As depicted by the diagrams below, when we multiply each singular value
by a positive integer p, the amplitude of the audio increases as the scalar p
increases. We also tried splitting the singular values into two parts and
perform different scaling on the first half and the second half. Result shows
that there is no perceptible difference on modifications performed on the
lower singular values.
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(a) p = 4 (b) p = 2 (c) p = 0.5 (d) p = 0.5 + 10

Figure 14: Modification of singular values by a linear scalar for audio repre-
sented by their spectrograms and audio signals

Differences are more significant when we modify the singular values expo-
nentially. When we raise each singular value to its eth power, both noise level
and overall amplitude increases as e increases. The output can be disturbing
for e greater than 2 and can be too soft for e smaller than 0.5.

(a) e = 2 (b) e = 1.5 (c) e = 0.7

Figure 15: Modification of singular values by an exponential scalar for audio
represented by their spectrograms and audio signals
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4.3 Data Analysis: COVID-19

We perform our data collection on the COVID-19 dataset acquired from
USA facts[3]. The data are available starting from January 22, 2020 and are
updated daily. The ending date of the collected date is subject to change
across different sections of our data analysis based on the download date.
Our data analysis are performed on two data matrix from the website. Both
have county as row variable, date as column variable, and have the corre-
sponding State data available in a separate column. Each entries contain the
cumulative death number and the cumulative case number for each county
on the date in the two data matrix respectively.

4.3.1 State Clustering

Cumulative Death Number for States To look at the clustering among
different states, we first sum up the entries of each county by the state they
belong to. As we treat Washington D.C. as an individual observation, we now
have 51 total row observations together with the 50 states. Using the method
introduced in Section 3.3.3, we plot the first three left singular vectors of the
data matrix.

As observed in the scatter-plot above, the four notable outliers are NY,
NJ, CA, and WA. Each of the outlying states having significant death rates
and different patterns in the outbreak timeline that group them away from
the cluster of all other states in three different directions.

WA is where the first outbreak of the virus happens in the United States
and has an outbreak curve a few weeks ahead of all other states. NY and
NJ are the main epicenters following WA that still had the greatest death
number till the time this dataset was collected. CA has an consistent increase
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in death number at an increase rate of 1% throughout the outbreak and is
now the newest state with the most number of cases. With these three regions
being the epicenter of the United States at different times of the outbreak, it
makes sense for them to be away from the cluster in three different directions.

Note that NY and NJ have similar patterns in the outbreak but differ in
severity. This characteristic results in the two states being away from the
clustering at the same direction but in different distance in the graph above.

Daily New Cases Using similar techniques as stated in the previous sec-
tion, we produce a data matrix with the reported cases for each state on
each date. As the raw data contains cumulative case number in each entry,
we take the difference between consecutive columns and produce a data ma-
trix with the newly reported cases in each entry. One thing to note is that
the data relies on daily government-reported data, meaning that cumulative
numbers fluctuate, and that certain states can have have negative new death
number on some days.

By projecting the data matrix onto its second right singular vector, we
observe the general trend across the selected time period. As we are trying
to investigate in the influence of statewide reopening plans, we select the
columns from May 15, 2020 to July 5, 2020.

We set the grouping color variable as whether the state was open in the
beginning of May, and leave a 14-day grace period for the virus to be tested.
By comparing the reopening plan across different states, we observe that the
phase with 50% retail rate is stratified into two groups, either at the end of
April and at the beginning of May or at the end of May towards early June.
For certain states that do not have detailed reopening plans, we chose the
date of the most aggressive reopening phase as its reference for our grouping
variable. The x-axis is labeled as the date duration between April 21, 2020
and the reopening date of each state decided as previously mentioned. The
date April 21 is chosen as it is the earliest reopening date across all 50 states
despite the one state that did not issue a stay-at-home order. The color-coded
clustering graph is resulted as below.
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We observe for the states that have 50% retail industry open at the be-
ginning of May to be located on the top half of the graph, and for the ones
that remain closed to be located on the bottom graph. We here can interpret
the second singular vector as closely related to the curve flattening of each
state.

4.3.2 States

Daily New Deaths for States As of July 9, 2020, USA Facts only pro-
vides raw data which includes cumulative information on COVID-19 deaths
in all United States counties. This data can be manipulated to produce a
new data frame for daily new deaths in each state.

To visualize this data set, we construct a series of surface plots inspired
by the exploratory data analysis research on network traffic data provided
in [16]. This plots are displayed in Figure 16. The first plot describes the
original data about new deaths in each state, where the x-axis records days
since January 22 and the y-axis corresponds to each state in alphabetical
order (there are a total of 51 entries since Washington, DC is included).
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Figure 16: New Deaths Nationwide (CSVD)

As a comparison, the plots in Figure 17 are in the exact same format as
Figure 16, but use the cumulative deaths data.
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Figure 17: Cumulative Deaths Nationwide (CSVD)

The above plots were constructed by centering the data around the col-
umn mean. Scree plots like the one provided in section 6.3 can be used to
find an optimal mean-centering method. To experimentally compare how
different means may illustrate different aspects of the data, we provide some
plots using no centering (SSVD), row centering (RSVD), and double center-
ing (DSVD) in Figure 18.
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Figure 18: New Deaths Using Different Centerings

While analyzing the plots illustrating the original data for new COVID-
19 deaths, it was noticed that some of the new death counts were negative.
Similarly, there was an abnormally large spike for New Jersey (1887 new
deaths) at the end of June, well after New Jersey experienced its largest
wave in COVID-19 deaths. In their page on sources and methodology for
their data collection, USA Facts acknowledges this and explains that due to
the fluctuation of reported deaths in goverment-provided information, some
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cumulative death counts may decrease on a daily basis.

New Cases Per Day Due to the lag between initial diagnosis and deaths
that may arise from a positive case, it is hard to glean information from SVD
approximations from the above plots. In order to better identify patterns in
the ongoing situation regarding COVID-19 in the United States, we compute
the same plots as above but specifically for new cases diagnosed per day in
Figure 19. This was also obtained through the data provided by USA Facts,
but this time as downloaded July 13, 2020. Thus, the data included ranges
from January We again use the column mean centering for this plot.
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Figure 19: New Cases Nationwide (CSVD)

The SV 1 plot clearly provides a general approximation of the most dom-
inant trends in the data. However, a more in-depth analysis of the SV 2 and
SV 3 plots reveal interesting patterns in the data. To further understand
these plots, interactive plots were constructed in Jupyter Notebook using
Plotly to determine which peaks correspond to each day and state. Three
viewpoints of interest from the interactive plots for SV 2 are provided in
Figure 20.
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(a) (b) (c) Snapshot 3

Figure 20

In Figure 20 (a), there are obvious dramatic peaks for most states around
March and April, particularly in New York and New Jersey. However, there
also seem to be some states that are negative around this same time frame,
as is better seen in Figure 20 (b). It is important to note that a state showing
negative behavior in this plot doesn’t actually mean that there were negative
new cases. Rather, a negative value indicates that whatever pattern this
plot displays is being experienced in the opposite direction at that particular
moment in time.

Upon further inspection, just three states in this plot were negative while
the remainder were positive or plateauing: California (4), Florida (9), and
Minnesota(43). Researching more about cumulative case data shows that
most of these states experienced relative plateaus in cumulative cases around
this time frame when compared to other states.

Figure 20 (b) displays the more recent behavior for states in the second
singular value term, or the most recent and second-most-dominant traits of
the new cases data as of July 12. From left to right, there are six states with a
noticeable downward slope from this view: Illinois (14), Massachusetts (18),
Minnesota (23), New Jersey (31), New York (34), and Pennsylvania (38).
These are all states that experienced intense peaks earlier in the pandemic
and have since experienced a decrease.

Figure 20 (a) also shows a relative lull in dramatic spikes around the
130-150 day range. This phase is marked by an interesting change for New
York (34), which goes from having the tallest peaks of all states to dipping
into the negative range. This transition from positive to negative for New
York corresponds to days 138 and 139, or June 8-9. Interestingly, June 8
marks the 100th day since the first COVID-19 case in the state, as well as
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the beginning of the first phase of reopening in New York City.
New Jersey’s progression in SV 2 is similar to New York’s, but on a

smaller scale. For New Jersey (31), the transition from positive to negative
occurs from June 15 to June 16. This exactly corresponds to the first day of
Stage 2 reopening in NJ, which includes outdoor dining and special events,
nonessential retail stores, and child daycare centers, to name a few. While
this does not align exactly with the policy change that took place on June
8 in New York, it is interesting to consider how these transitions tend to
correspond to significant policy changes in each respective state.

We can explore this hypothesis further by looking at other states that
didn’t transition to positive to negative, but instead transitioned from periods
of relative plateau to sharp increases. For most states, the plateau changes
to an unusually high increase around days 140-150, or June 10-20. As an
example, we look at Indiana (13), which plateaued for a long time in the
200-300 range before starting to rapidly climb into the 600+ range around
June 20. Indeed, June 12 through July 3 is the time frame for Indiana’s Stage
4 reopening plan, which does correspond to a relatively significant (although
not dramatic) increase in cases in the original data.

As an interesting outlier, consider Massachusetts (19). While Massachusetts
also experienced a spike earlier in the pandemic, its plateau stays consistent
past day 150, even while almost all other states experience some kind of stark
change. While Massachusetts has also been executing a gradual reopening
plan, it has also been among the more aggressive states in combating coron-
avirus.

This inspires us to look at aggressiveness as another metric beyond specific
reopening dates. WalletHub provides a thorough analysis of this concept,
computing a ranking of all 50 states according to 51 relevant and carefully
weighted parameters in [5]. New York ranks number one at the top of the
list as of July 14, with New Jersey ranked 5 and Massachusetts ranked 8.
While the WalletHub ranking we viewed was published on April 7, 2020, the
information it provided helped us develop an idea of what pattern the SV
2 plot is depicting, and the ranking is likely to still be relevant even a few
months later into the pandemic.

Comparing peaks/plateaus with this ranking (among other coronavirus
news sources) seems to indicate that the SV2 plot has something to do with
the aggressiveness of state lockdowns or safe reopening policy (or effects of
aggressive policy). States which are dealing with the negative repercussions
of a relatively lax COVID-19 containment policy in June and July, such as
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Alabama or Florida, are reflected as such in the SV2 plot. On the other
hand, the downward trends following a transition from positive to negative
numbers seem to indicate a “safe” reopening in New Jersey and New York
in terms of new cases diagnosed.

It should be understood that this interesting behavior around days 140-
150 doesn’t precisely align with policy changes in each state. It is also obvious
that most states wouldn’t initiate reopening plans in the first place unless
there was evidence (i.e. a plateau or downward trend in recent new cases) to
support such a policy change. Likewise, access to testing is highly variable
even within states and reopening policy is highly subjective and different
depending on cases experienced. However, the behavior of the SV 2 plot
during and following this period provides some interesting insight into the
effects of aggressive policy in affecting counts of new cases.

Similarly, we could also view our SV 2 plot as representing some measure
of flattening the curve of new infections, since states would have only made
policy changes following evidence that the curve had flattened somewhat and
it was safe to begin a phased reopening. This hypothesis would align with
our above observations and connections.

Looking at the SV 3 plot is also of interest. Specific viewing angles of the
SV 3 plot are provided in Figure 21.

(a) (b)

Figure 21: Selected Views of SV 3 Only Plot

In Figure 21 (a), we see four huge negative spikes: California (4), Florida
(9), New York (34), and Texas (43). These are precisely the four states with
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the highest overall new cases tolls as of July 14.
Meanwhile, in Figure 21 (b), we see that almost all but the 4 aforemen-

tioned states are relatively flat for most of the plot. However, they almost
all start to increase towards the end.

Observing the values in the z-axis for y = 170 (the last day in the data
frame we downloaded, or July 12), the highest values are z = 2,932.275 for
Vermont (46) and z = 2,922.471 for Hawai’i (11). Hawai’i and Vermont are
the two lowest states in the country in terms of cumulative cases as of July
14. While other interacting factors would contribute to the total case count
of a state, it appears that the SV3 plot has something to do with cumulative
positive cases in states.

4.3.3 Counties in Florida

Cumulative Deaths in Florida Here, we focus our attention on the state
of Florida. Before beginning our analysis, we look at the generalized scree
plot for the daily cumulative COVID-19 deaths in Florida. Note that in the
data matrix, the rows correspond to counties and the columns correspond
to dates. Thus, row mean centering centers each day’s cumulative deaths
by the average cumulative deaths for all counties that day, while column
mean centering centers each county’s daily cumulative deaths by the average
cumulative deaths per day for that county.

Regardless of centering, we can see in Figure 23 that most of the variation
in the data is captured in the first three SVD components, to which we now
limit our analysis. In Figure 24, we plot the daily cumulative COVID-19
deaths in Florida over time, as well as the SVD components using each type
of centering.

First, notice that the first principal component, which captures the most
of the variation in the data, accounts for the general trend of deaths, as can
be seen in the SV1 component plots. This holds true for all states.

For Florida, we now focus on Pinellas County and Broward County. We
can see in Figure 22 that the death rate in Broward County decreses as
time goes on, while the death rate in Pinellas County saw a sharp increase
after day 150. These differences in trajectory seem to be captured in the
SV2 component, where Pinellas increases and Broward decreases towards
the end. The sharp change in trajectory towards the end of the time period
for Pinellas county, although not completely apparent in the original plot,
seems to coincide with an extreme (in comparison to other states) deviation
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of the rank three approximation from the original data. This makes sense
since trajectory is captured in the first principal component, and deviations
in this feature account for a large proportion of the residual.

Figure 22: Daily cumulative COVID-19 deaths for each Florida county

Figure 23: Generalized scree plot for daily cumulative COVID-19 deaths in
Florida counties

Cases in Florida We now turn our attention to the number of known
COVID-19 cases over time in Florida, organized by county and day, from
data provided by USA Facts. In our analysis we also use information on the
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Figure 24: SVD components and rank 3 approximation residuals for daily
cumulative COVID-19 deaths in Florida counties
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dates of opening and closing policy decisions in Florida, provided by Johns
Hopkins University. The scree plots for daily new cases and total cases by
day are shown in Figure 25.

Figure 25: Scree Plots for Florida Cases

These scree plots show that most of the variation in the data is captured
in the first three principal components and that mean centering has little
effect. Thus, we focus out analysis on the first three principal components
using the uncentered data.

In Figures 26 and 27, we plot the known cumulative and new cases over
time and the SVD components. Red vertical lines represent policy decisions
towards the closure of facilities, while blue vertical lines represent policy
decisions towards the opening of facilities. There is typically a fourteen-day
lag between infection and reporting of a new case, so we shift the case line
plots back by fourteen days to align policy decisions and the time at which
we should see any of their affects on case numbers.
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Figure 26: SVD Plots for Daily Cumulative COVID-19 Cases in Florida,
with points shifted to the left by fourteen days, with red and blue dotted
lines to represent closing and reopening of facilities.
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Figure 27: SVD Plots for Daily New COVID-19 Cases in Florida, with points
shifted to the left by fourteen days, and with red and blue dotted lines to
represent closing and reopening of facilities.

In Figure 27, we can see that the final two blue vertical lines, which rep-
resent the reopening of various facilities at half capacity, are quickly followed
by a significant spike in cases, especially in Miami-Dade county. The rank 1
plots, however, are quite noisy and difficult to interpret.

The plots in Figure 26 are much less noisy. Similar to the COVID-19
death plots, we see a prominant “bump” in the SV2 and SV3 plots. Inter-
estingly, the decision to allow education systems to reopen aligns is exactly
fourteen days before SV2 plot’s intersection with the horizontal axis.

To generate Figure 28, we apply the function f(n) = log(1+n) to each of
the entries in the data matrix and then perform the same analysis as above
to the modified matrix.

An interesting feature of this plot is that in the SV3 plot, the zero-points
all come within two weeks of an opening or closing policy decision made by
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Figure 28: SVD Log Plots for Daily Cumulative COVID-19 Cases in Florida

the Florida government. It is feasible to imagine that the SV3 plot, to some
extent, captures the effects of these decisions on the number of cumulative
cases in each county.

Additionally, notice that in the SV2 plot, Miami-Dade and Broward coun-
ties peak at very similar values, while Palm Beach peaks at a much lower
value. This is interesting because Miami-Dade, Palm Beach, and Broward
counties are all beach counties, geographically adjacent to one another. One
would expect that they behave very similarly in terms of case numbers, but
palm beach deviates from Miami-Dade and Broward Counties. Additionally,
this peak coincides with the statewide stay-at-home order issued on April
1st, 2020.

Finally, in the Rank 2 approximation plot in Figure 28 Miami-Dade and
Broward counties show a “dip” after the stay-at-home order issued around
April 1st, while Palm beach does not. This is consistent with the Miami-Dade
and Broward curve “flattening” in the original data, while the cases in Palm
Beach continued to grow exponentially. These observations, along with the
Palm Beach’s peak in the SV2 plot being much lower than the Miami-Dade
and Broward counties, indicate that the SV2 plot captures the “flattening”
of the case curve, relative to the general trend in the state, after the issuance
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of the statewide stay-at-home order.

4.4 Watermarking and Steganography

4.4.1 Liu & Tan Watermarking Scheme

The Liu & Tan watermarking scheme changes the singular value spectrum of
the watermarked image while leaving the principal components unaffected.
Because of this, embedding a watermark in an image only enhances some
of the already-present features of the image, making the watermark remark-
ably imperceptible for reasonably high values of α. Using the image and
watermark shown in Figure 29, this is demonstrated in Figure 30.

(a) Original image 1 (b) Watermark 2

Figure 29: Raccoon and fox images used in experiments

(a) α = 1 (b) α = 0.5 (c) α = 0.25 (d) α = 0.1

Figure 30: Images watermarked using Liu & Tan scheme

1“Young Raccoon in Crab Apple Tree” by Bill Buchanan, licensed under Public Domain
Mark 1.0

2“Red Fox” by Jean Beaufort, licensed under CC0 1.0
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One advantage to the Liu & Tan watermarking scheme is that it is ex-
tremely robust to distortions, including geometric distortions such as rota-
tions. For this experiment, we embed the fox watermark into the raccoon
image with α = 0.1, rotate the watermarked image at various angles, and
extract the watermark from the distorted images. The results are shown in
Figure 31.

(a) 1◦ (b) 25◦ (c) 45◦ (d) 90◦

Figure 31: Top row: Rotated watermarked images; Bottom row: Extracted
watermarks

The main disadvantage of the Liu & Tan watermarking scheme, as noted
in [15], is that it fails the basic security test outlined in 3.4.4. Figure 32
shows the results of the basic security test for the Liu & Tan watermarking
scheme.
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(a) Original image (b) Watermark (c) Phony watermark 3

(d) Watermarked image (e) Phony watermark ex-
tracted

Figure 32: Basic security test for Liu & Tan watermarking scheme

The optimal scaling factor may be different depending on our desired ro-
bustness against specific attacks, the nature of the images being used, and the
extent to which we would like to conceal the existence of a watermark. Using
these parameters, we explore various avenues that can help us determine this
optimal scaling factor.

For the following plots, we used images from the Imageio image library.
The cat’s eye photo was cropped from a larger photo of the cat’s face found
in [1] in order to ensure that it was small enough to be embedded in the
coffee cup image [14].

3“Siberian Husky Dog Pet” by Andrea Stöckel, licensed under CC0 1.0
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(a) Coffee Cup (b) Cat’s Eye

Figure 33: Imageio Sample Images

The following plots demonstrate how increasing the scaling factor results
in a larger effect on the image, providing us with a measure of perceptibility.
However, an increased scaling factor also allows us to extract our watermark
with greater accuracy (although this improved accuracy may be too small to
be significant).

(a) Perceptibility (b) Extraction Error

Figure 34: Perceptibility and Extraction Error for Image Watermark, Liu &
Tan Scheme

To visualize this, we provide some examples using various scaling factors
below. Note that a is equivalent to α in the labeling of these examples.
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Figure 35: Examples for Image Watermark, Liu & Tan Scheme

These plots and examples illustrate the tradeoff between the scaling factor
a, the accuracy of the extracted watermark. This issue is explained in further
detail in [13].

As images and other forms of digital media are sent and shared through
the internet, they often undergo data compression. Thus, we are curious as
to whether a watermark can still be extracted from such a compressed image
using the Liu & Tan scheme.

To construct the following plot, we compute low-rank deterministic SVD
approximations of the watermarked image using various scaling factors and
attempt to extract our watermark from the image. This allows us to study
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how robust various scaling factors are against a simple distortion such as
a reduced rank approximation via the SVD. The relative error is taken by
calculating the absolute difference between the norms of the extracted water-
mark and original watermark and then dividing this difference by the norm
of the original watermark.

(a) Spectral Norm Relative Error (b) Frobenius Norm Relative Error

Figure 36: Low Rank Extraction Plots, Liu & Tan Scheme

Regardless of the norm, we unsurprisingly see that a lower scaling factor
is the least robust against low rank approximations, while a higher scaling
factor is more robust. However, we notice that this difference is less extreme
for scaling values greater than a = 0.15.

To better understand this, the following side-by-side examples have been
generated to visualize the Liu-Tan algorithm’s robustness against low-rank
approximations. Note that in all example images using low rank approxima-
tions, including following sections, we use a = 0.05 as our embedding scaling
value.

51



Figure 37: Low Rank Examples for Image Watermark, Liu & Tan Scheme

Cropping is one very straightforward image processing operation that can
easily be utilized as an attack. Robustness against such simple attacks is a
particularly relevant concern for watermarking and steganography.

To assess the Liu-Tan algorithm’s robustness against cropping, we can
calculate the relative error between the extracted watermark from the un-
cropped image and the extracted watermark from the cropped image.

Note that this process requires knowledge of the original dimensions of
our watermarked image, since we pad our cropped image before computing
the SVD so that the singular value and vector matrix will match dimensions.
Thus, if we were given a cropped image without any knowledge of its original
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size, we would be unable to recover our watermark.
We pad our matrices with zeros several times throughout this process.

We first compute our usual watermark and watermark extraction scheme,
but leave our extracted watermark unstacked in terms of color channels at
the end. Then, we pad our stacked, cropped, watermarked image with zeros
to match the shape of the stacked watermarked image. We then attempt to
extract the watermark from the padded cropped image using UW , S, V >W , and
a (all of which need to be known from the original image and watermarked
image). We then remove the padded zeros from this extracted watermark
so that it matches the shape of our original watermark. We now have two
stacked watermarks, one extracted without cropping and one extracted with
cropping, which we can use to compute error.

The below plots are calculated by plotting the relative error described
earlier. This allows us to incrementally simulate the process of cropping.

(a) Cropping Columns (b) Cropping Rows

Figure 38: Cropping Plots for Image Watermark, Liu & Tan Scheme

To visualize this, some examples of watermarks extracted from cropped
images are provided in Figure 39.
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Figure 39: Examples of Cropping and Watermark Extraction, Liu & Tan
Scheme

It is also suggested in [13] that a randomly generated matrix would be
a stronger watermark than a meaningful one. To test this, we compute the
above plots for a randomly generated watermark matrix with dimensions
matching the shape of the singular value matrix of the image we are water-
marking. These new plots are displayed in Figure 40. In the case of the
coffee image, the singular value matrix size is 600× 600.

54



(a) Perceptibility (b) Error

(c) Low Rank Extraction Error

Figure 40: Random Matrix Watermark Analysis, Liu & Tan Scheme

For the following examples, we use a random 600×600 matrix of random
values from a uniform distribution over the interval [0,1). This matrix is
displayed as a grayscale image in Figure 41.

Figure 41: Random Matrix Watermark

Figure 42 shows some visual examples of how the scaling factor affects
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the image using the above random watermark. Likewise, we also illustrate
the robustness of a random watermark against a simple distortion such as a
low rank approximation.

(a) Adjusted Scaling Factor (b) Low Rank Approximation

Figure 42: Example Images for Random Matrix Watermark, Liu & Tan
Scheme

From these plots and examples, we can make some interesting conclusions
about the Liu-Tan algorithm. First, we see that even with relatively large
scaling factors, a randomly generated matrix that is even larger than an im-
age matrix in terms of dimensions (the cat’s eye watermark is 342×177 when
stacked) has much lower of an effect on the image when inserted as a wa-
termark. However, a random watermark is much more vulnerable to simple
distortions like a low-rank approximation than a “meaningful” watermark
like an image.

56



4.4.2 Jain et al. Watermarking Scheme

The watermarking scheme proposed by Jain et al. in [10] improves on the
security of the Liu & Tan watermarking scheme while trading off robust-
ness to distortions—especially geometric distortions such as rotation—and
imperceptibility. Figure 43 shows the images resulting from embedding the
fox image into the raccoon image (see Figure 29) using the Jain et al. wa-
termarking scheme.

(a) α = 1 (b) α = 0.5 (c) α = 0.25 (d) α = 0.1

(e) α = 0.01

Figure 43: Images watermarked using Jain et al. scheme

As opposed to the Liu & Tan watermarking scheme, the differences be-
tween the watermarked image and the original image are quite apparent, even
for α = 0.1. Thus, for practical usage, we opt to use very low values such as
α = 0.01. The Jain watermarking scheme is somewhat robust to geometry-
preserving distortions, but this robustness decreases with the value of α, so
this proves to be a major disadvantage.

The above phenomenon is described in the plots displayed in Figure 44,
computed using the same Imageio cat and coffee pictures as earlier. We also
include a plot to test the robustness of the Jain et al. watermarking scheme
against low-rank approximations as a distortion.
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(a) Perceptibility (b) Extraction Error

(c) Low Rank Extraction Error

Figure 44: Image Watermark Analysis, Jain et al. Scheme

Some visual examples for the above plots are provided in Figure 45.
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Figure 45: Example Images for Image Watermark, Jain et al. Scheme

We also test the robustness of the Jain et al. watermarking scheme against
incrementally cropping by computing the same plots displayed in 4.4.1. These
are shown in Figure 46

(a) Cropping Rows (b) Cropping Columns

Figure 46: Cropping Plots for Image Watermark, Jain et al. Scheme

These results are visualized through example images in Figure 47.
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Figure 47: Examples of Cropping and Watermark Extraction, Jain et al.
Scheme

The Jain et al. watermarking scheme does not respond well to geometric
distortions at all. Running a similar experiment to that shown in Figure 31,
we see that the extracted watermark from the rotated watermarked image is
not recognizable, even with a rotation of just one degree. Figure 48 shows
us the results of the experiment.
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(a) 1◦ (b) 25◦ (c) 45◦ (d) 90◦

Figure 48: Rotated watermarked images and their extracted watermarks for
α = 0.25

Although the Jain et al. watermarking scheme is less robust to distortions,
its main advantage over the Liu & Tan watermarking scheme is its improved
security. Here, as in Figure 32, we perform the basic security test for the
Jain et al. watermarking scheme. As we can see in Figure 49, extracting the
incorrect watermark from the image produces an image that barely resembles
the watermark.
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(a) Original image (b) Watermark (c) Phony watermark

(d) Watermarked image (e) Watermark Extracted (f) Phony watermark ex-
tracted

Figure 49: Basic security test for Jain et al. watermarking scheme

Knowing the above information about the Jain et al. scheme, we are in-
terested in the effectiveness of a random matrix watermark. We compute the
same plots as in 4.4.1 to test the robustness of a random matrix watermark
using this scheme against the Liu & Tan watermarking scheme.
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(a) Perceptibility (b) Extraction Error

(c) Low Rank Extraction Error

Figure 50: Random Watermark Analysis, Jain et al. Scheme

We use the same random matrix watermark as in 4.4.1 for the following
images.

In addition, we see that a random matrix watermark is very much not
secure against a distortion by cropping using this watermarking scheme in
the following plots.
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(a) Adjusted Scaling Factor (b) Low Rank Approximation

Figure 51: Example Images for Random Matrix Watermark, Jain et al.
Scheme
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(a) Cropping Columns (b) Cropping Rows

Figure 52: Cropping Plots for Random Matrix Watermark, Jain et al.
Scheme

4.4.3 Modified Jain et al. Watermarking Scheme

In this section, we examine the various properties of the modification to the
Jain et al. watermarking scheme proposed in Section 3.4.3. As in the previous
sections. Figure 53 shows the results of embedding the fox watermark in the
raccoon image (Figure 29) using various scaling factors α.

(a) α = 1 (b) α = 0.5 (c) α = 0.25 (d) α = 0.1

Figure 53: Images watermarked using the modified Jain et al. watermarking
scheme

We visualize these terms with an example using images in Figure (54)
We examine the behavior of the Modified Jain et al. watermarking scheme

as the scaling factor is modified in the following plots. In addition, as in
previous schemes, we can test the robustness of the Modified Jain et al.
watermarking scheme against various distortions such as being subjected to
a low-rank SVD approximation.
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(a) Original Image (b) Watermarked Image
(Jain)

(c) Watermarked Image
(Jain Modified)

(d) Watermark (e) Additive Term (Jain) (f) Additive Term (Jain
Modified)

Figure 54: Examples for modified and unmodified Jain et al. watermarking
schemes

(a) Perceptibility (b) Extraction Error

(c) Low Rank Extraction Error

Figure 55: Image Watermark Analysis, Modified Jain et al. Scheme
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Examples of the previous results are displayed in Figure 56.

(a) Adjusted Scaling Factor (b) Low Rank Approximation

Figure 56: Example Images for Image Watermark, Modified Jain et al.
Scheme

Likewise, we also analyze the modified scheme’s robustness against incre-
mentally cropping the watermarked image in Figure 57.
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(a) Cropping Columns (b) Cropping Rows

Figure 57: Cropping Plots for Image Watermark, Modified Jain et al. Scheme

These results are visualized in Figure 58.
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Figure 58: Examples of Cropping and Watermark Extraction, Modified Jain
et al. Scheme

The behavior in Figure 57(b) is particularly interesting to us. We have
not yet determined why our error seems to be constant, even when removing.
When we adjust our code so that we are incrementally cropping more rows,
we get the results displayed in Figure 59.
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Figure 59: Further Analysis of Cropping Rows for Image Watermark, Modi-
fied Jain et al. Scheme

We see that the error remains constant until briefly before 300 rows are
removed, at which point the error begins increasing with an interesting pat-
tern.

In the future, we plan to further investigate our code to ensure that there
are no errors in order to determine whether these plots truly do indicate
an unusual robustness against cropping for the Modified Jain et al. cheme.
We also remember that our watermark is much smaller than our embedding
image, requiring us to pad our watermark with zeros. Perhaps experimenting
with different sizes of watermarks and increasing the size will results that are
more representative of the Modified Jain et al. scheme’s true robustness
against cropping.

We also test the robustness of the Modified Jain et al. watermarking
scheme if a random matrix watermark is employed in Figure 60.
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(a) Perceptibility (b) Extraction Error

(c) Cropping Columns (d) Cropping Rows

(e) Low Rank Extraction Error

Figure 60: Random Watermark Analysis, Modified Jain et al. Scheme

Again, we notice some strange behavior in Figure 60. In addition, the
behavior in the column-cropping plots for the Jain et al. and Modified Jain
et al. schemes appears to be much more erratic when compared to the same
plots for the Liu & Tan watermarking scheme. We will continue to investigate
both of these issues in the future.

Note that for both the image and random watermark, cropping rows
and attempting to extract a watermark according to the method described
in Section 4.4.1 yields strange results. While we have not yet determined
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whether these are erroneous or reflective of an unusual robustness against
cropping for the modified Jain et al. scheme, we plan to further explore
alternate means of watermark extraction from a watermarked image distorted
by cropping in order to remedy these potential problems in our error plots
for row cropping. Some of our ideas include padding each color channel of
the cropped image before stacking it and removing rows/columns in the SVD
outer product expansion accordingly if the number of rows/columns removed
during cropping is known.

We also display some example images for the earlier plots in Figure 61.
Again, the random matrix watermark being used is the same 600×600 matrix
used in Sections 4.4.2 and 4.4.1.

Figure 61: Example Images for Random Watermark, Modified Jain et al.
Scheme

We see that, as in previous schemes, a random matrix watermark allows
for good imperceptibility and accurate extraction under ideal circumstances,
but is not robust against simple distortions and attacks.
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Finally, as in section 4.4.2, we test how the modified Jain watermarking
scheme responds to rotations. Figure 62 shows the results of this experiment.

(a) 1◦ (b) 25◦ (c) 45◦ (d) 90◦

Figure 62: Rotated watermarked images and their extracted watermarks for
α = 0.25

The extracted fox watermark is somewhat recognizable after a rotation
of the watermarked image by one degree, but any larger rotation, similarly
to the Jain et al. scheme, results in significant distortions to the extracted
watermarked image. The modified Jain et al. watermarking scheme is not
robust to distortions.

Finally, we perform the basic security test on the modified Jain et al.
watermarking scheme, as in 4.4.2. The results are shown in Figure 63
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(a) Original image (b) Watermark (c) Phony watermark

(d) Watermarked image (e) Watermark (f) Phony watermark ex-
tracted

Figure 63: Basic security test for modified Jain et al. watermarking scheme

As we can see, the extracted watermark bears only slight resemblance to
the phony watermark. The results here are very similar to that of Jain et
al., showing that the modified Jain et al. watermarking scheme has similar
properties with respect to the protection of rightful ownership.

4.4.4 Comparing Jain et al. and Modified Jain et al. Watermark-
ing Schemes

The above experimental results seem to indicate that the modified Jain et
al. watermarking scheme preserves the desirable robustness properties of the
Jain et al. watermarking scheme while improving on the imperceptibility of
the embedded watermark. In this section, we support this inclination with
some theoretical results and some additional experimental results.

Let A = USV > be a matrix and W = UWSWV
>
W a watermark matrix.
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Recall that the Jain et al. watermarking scheme has an embedding function

EJ : (A,W,α) 7→
AJ = A+ αUUWSWV

>

K = (A, VW , α),

and extraction function

E−1J : (A∗J , K) 7→ W ∗
J = α−1U>(A∗J − A)V V >W .

Also recall that the Jain et al. watermarking scheme has an embedding
function

EM : (A,W,α) 7→
AM = A+ αUWSWV

>

K = (A, VW , α),

and extraction function

E−1M : (A∗M , K) 7→ W ∗
M = α−1(A∗M − A)V V >W .

Using the above, we now show that the Frobenius norm error incurred in
the extracted watermark in response to an additive perturbation P on the
watermarked matrix is the same for the modified and unmodified Jain et al.
scheme, and this error can be expressed in terms of ‖P‖F and α.

Proposition 1. Let A, W , and P be matrices, and let α ∈ R. With notation
as above, Let

(AJ , KJ) = EJ(A,W,α),

(AM , KM) = EM(A,W,α),

W ∗
J = E−1(AJ + P,KJ), and

W ∗
M = E−1M (AM + P,KM).

Then we have

‖W −W ∗
J‖F = ‖W −W ∗

M‖F =
‖P‖F
|α|

.

Proof. Apply the SVD to obtain A = USV > and W = UWSWV
>
W . Under

the Jain et al. watermarking scheme, if we attempt to extract the distorted
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watermark W ∗
J from the perturbed matrix AJ + P , we find that

W ∗
J = α−1(U>(A∗J − A)V V >W

= α−1U>(AJ + P − A)V V >W

= α−1U>(A+ αUUWSWV
> + P − A)V V >W

= α−1U>(αUUWSWV
> + P )V V >W

= UWSWV
>
W + α−1U>PV V >W

= W + α−1U>PV V >W

Computing the error with respect to the Frobenius norm, we find that

‖W ∗
J −W‖F =

∥∥α−1U>PV V >W∥∥
F

=
‖P‖F
|α|

,

since the matrices U, V , and VW are unitary.
Similarly, for the modified Jain et al. watermarking scheme, we find that

W ∗
J = α−1(A∗M − A)V V >W

= α−1(AM + P − A)V V >W

= α−1(A+ αUWSWV
> + P − A)V V >W

= α−1(αUWSWV
> + P )V V >W

= UWSWV
>
W + α−1PV V >W

= W + α−1PV V >W ,

and

‖W ∗
M −W‖F =

∥∥α−1PV V >W∥∥
F

=
‖P‖F
|α|

,

since V, VW are unitary matrices.

Note that an additive perturbation to the watermarked matrix results in
an additive perturbation to the extracted watermark. The proof of Propo-
sition 1 also shows that the error in the extracted watermark increases with
‖P‖F and decreases as α increases, as expected.
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Next, informed by the experimental examples in Section 4.4.3, we examine
how the perceptibly of the watermark differs for the modified and unmodified
Jain et al. watermarking schemes.

Examining errors in terms of the Frobenius norm, we find that

‖AJ − A‖F =
∥∥αUUWSWV >∥∥F

= α ‖W‖F ,

and

‖AM − A‖F =
∥∥αUWSWV >∥∥F

= α ‖W‖F ,

since the matrices U,UW , and V are unitary. Thus, the error between the
watermarked and original matrix for the modified and unmodified Jain et al.
watermarking schemes are the same. However, the removal of the multiplier
U in the additive term αUUWSWV

> seems to have desirable effects on the
imperceptibility of the watermark in the image. Thus, we use other methods
to examine the relationships between AJ and A, and AM and A.

We define the correlation between two matrices X and Y to be

corr(X, Y ) =
〈X, Y 〉F
‖X‖F ‖Y ‖F

,

where 〈X, Y 〉F is the Frobenius inner product 〈X, Y 〉F = Tr(X>Y ). Note
that −1 ≤ 〈X, Y 〉F ≤ 1, and if X is a scalar multiple of Y , then corr(X, Y ) =
1. This is the cosine of the angle between X and Y , as described in [7]. In
Figure 64, we display the results of some experiments in which we embedded
watermarks into images with various scaling factors α and examined the
correlation between the resulting watermarked image and the original image.
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Figure 64: Correlations between image (A) and watermarked image (AW )
after watermark embedding with various scaling factors α

(a) Raccoon watermarked
by fox

(b) Raccoon watermarked
by noise

(c) Fox watermarked by
husky

The correlation between the watermarked image and the original image
remains above 0.95 for the modified Jain et al. scheme, while it drops quickly
for the unmodified version. This means that with the modified Jain et al.
watermarking scheme, the watermarked image is approximately a scalar mul-
tiple of the original image. This, combined with the results on the Frobenius
norm error between the watermarked image and the original image, indicate
that the modified Jain et al. watermarking scheme has better imperceptibil-
ity than the unmodified for any given scaling factor α, which is consistent
with observation.

Although the error in the extracted watermark after additive perturbation
is not different between the modified and unmodified Jain et al. schemes,
the property of the modified Jain et al. scheme described in the previous
paragraph allows us to use larger scaling factors α in practice without a
negative impact on perceptibility, resulting in less error in the extracted
watermark.

4.4.5 Audio

The watermarking technique can be applied onto audio files similarly as we
perform Short Time Fourier Transformation on audio data. In this section we
embed and extract audio watermark from and into audio data and perform
experiments with different distortions.

We perform audio watermarking on a 17-second recording clip of Bach
Cello Suite No.1[6], and the embedded watermark is a 7-second clip of news
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introduction music[2]. The news clip is embedded with a scaling factor α.
The watermarking scheme we are using here is the Liu & Tan scheme,

which embeds the watermark along the diagonal entries of Σ, the singular
values. As stated in Section 4.2.2, singular value modification for audio leads
to changes in amplitude and noise levels. This is demonstrated through
Figure 65. As α increases, the increase in noise level is depicted in the
spectrogram. The optimal value α for image is around 0.5, but for audio we
choose 0.4 as our optimal scalar, for noise are specifically perceptible in the
beginning of the audio when the original clip is silent.

(a) Original (b) α = 0.1 (c) α = 0.4 (d) α = 1.6

Figure 65: Audio watermarked using the Liu & Tan Watermarking Scheme

To check the robustness of the Liu & Tan Algorithm on audio watermark-
ing, we perform four separate distortions on the watermarked audio with
α = 0.4 using external audio software. The four modifications are to add re-
verb, to lower all pitches, to limit high frequencies, and to remove the noise.
The result shows that the most dominant feature, melody, is still preserved
in the extracted watermark, confirming the robustness of the algorithm.
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(a) Lower Pitch (b) Frequency (c) Remove Noise (d) Add Reverb

Figure 66: Distortions on Watermarked Audio using the Liu & Tan Water-
marking Scheme and the Extracted Watermarks

5 Concluding Remarks

In this report, we demonstrated three applications of the SVD in media
compression, data analysis, and media watermarking.

The first application is in media compression for image, video, and au-
dio. Low-rank approximation using SVD effectively preserves the dominant
features of the media while reducing the degrees of freedom. As the most
dominant features in videos are the surveillance backgrounds, the applica-
tion can be potentially used in video background removal in further research.
Modification of singular values also result in changes in various characteristics
of the media.

We performed three different algorithms for the computation of SVD.
The deterministic SVD is the most accurate, and the randomized SVD and
the compressed SVD are more efficient in different applications.

The second application provides a thorough understanding of the given
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data sets. By projecting the data matrix onto different singular vectors and
producing approximations, we can effectively visualize the different charac-
teristics and correlations among the data set.

The third application protects the ownership of medias, specifically im-
ages and audios. We investigate in the two algorithms adopted from Liu &
Tan [13] and Jain [10] in embedding and extracting a watermark matrix into
the media to be protected. The watermark matrix can be in the format of
an image, a piece of audio, or a random matrix. With the Liu & Tan scheme
is insecure and the Jain et al. scheme produces highly perceptible embed-
ding, we produced a modified algorithm that increases imperceptibility of
the embedded watermark and remains secure.

We intend to test the different watermarking schemes on audio water-
marking in further research.
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