
Random Projections and Dimension Reduction

Rishi Advani1 Madison Crim2 Sean O’Hagan3

1Cornell University

2Salisbury University

3University of Connecticut

Summer@ICERM, July 2020

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 1 / 35



Acknowledgements

Thank you to our organizers, Akil Narayan and Yanlai Chen, along with
our TAs, Justin Baker and Liu Yang, for supporting us throughout this
program

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 2 / 35



Introduction

During this talk, we will focus on the use of randomness in two main
areas:

low-rank approximation

kernel methods

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 3 / 35



Table of Contents

1 Low-rank Approximation
Johnson-Lindenstrauss Lemma
Interpolative Decomposition
Singular Value Decomposition
SVD/ID Performance
Eigenfaces

2 Kernel Methods
Kernel Methods
Kernel PCA
Kernel SVM

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 4 / 35



Johnson-Lindenstrauss Lemma

If we have n data points in Rd , there exists a linear map into Rk , k < d ,
such that pairwise distances between data points can be preserved up to
an ε tolerance, provided k > Cε−2 log n, where C ≈ 24 [JL84]. The proof
follows three steps [Mic09]:

Define a random linear map f : Rd → Rk by f (u) = 1√
k
R · u, where

R ∈ Rk×d is drawn elementwise from a standard normal distribution.

If u ∈ Rd , show E[‖f (u)‖22] = ‖u‖22.

Show that the random variable ‖f (u)‖22 concentrates around ‖u‖22,
and construct a union bound over all pairwise distances.

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 5 / 35



Johnson-Lindenstrauss Lemma: Demonstration

Figure: Histogram of ‖u‖22 − ‖f (u)‖22 for a fixed u ∈ R1000, f (u) ∈ R10

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 6 / 35



Table of Contents

1 Low-rank Approximation
Johnson-Lindenstrauss Lemma
Interpolative Decomposition
Singular Value Decomposition
SVD/ID Performance
Eigenfaces

2 Kernel Methods
Kernel Methods
Kernel PCA
Kernel SVM

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 7 / 35



Deterministic Interpolative Decomposition

Given a matrix A ∈ Rm×n, we can compute an interpolative decomposition
(ID), a low-rank matrix approximation that uses A′s own columns
[Yin+18]. The ID can be computed using the column-pivoted QR
factorization:

AP = QR .

To obtain our low-rank approximation, we form the submatrix Qk using
the first k columns of Q. We then have the approximation

A ≈ QkQ
∗
kA ,

which gives us a particular rank-k projection of A.

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 8 / 35



Randomized Interpolative Decomposition

We introduce a new method to compute randomized ID, by taking a
subset S of p > k distinct, randomly-selected columns from the n columns
of A. The algorithm then performs the column-pivoted QR factorization
on the submatrix:

A(:,S)P = QR

Accordingly we have the following rank k projection of A:

A ≈ QkQ
∗
kA ,

where Qk is the submatrix formed by the first k columns of Q.

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 9 / 35



Table of Contents

1 Low-rank Approximation
Johnson-Lindenstrauss Lemma
Interpolative Decomposition
Singular Value Decomposition
SVD/ID Performance
Eigenfaces

2 Kernel Methods
Kernel Methods
Kernel PCA
Kernel SVM

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 10 / 35



Deterministic Singular Value Decomposition

Recall the singular value decomposition of a matrix [16],

Am×n = Um×mΣm×nV
∗
n×n ,

where U and V are orthogonal matrices, and Σ is a rectangular
diagonal matrix with positive diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σr ,
where r is the rank of the matrix A.

The σi s are called the singular values of A.

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 11 / 35



Randomized Singular Value Decomposition

Utilizing ideas from [HMT09], our algorithm executes the following steps
to compute the randomized SVD:

1 Construct a n × k random Gaussian matrix Ω

2 Form Y = AΩ

3 Construct a matrix Q whose columns form an orthonormal basis for
the column space of Y

4 Set B = Q∗A

5 Compute the SVD: B = U ′ΣV ∗

6 Construct the SVD approximation: A ≈ QQ∗A = QB = QU ′ΣV ∗

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 12 / 35



Table of Contents

1 Low-rank Approximation
Johnson-Lindenstrauss Lemma
Interpolative Decomposition
Singular Value Decomposition
SVD/ID Performance
Eigenfaces

2 Kernel Methods
Kernel Methods
Kernel PCA
Kernel SVM

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 13 / 35



Results - Testing 620× 187500 Matrix

Figure: Error Relative to Original Data

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 14 / 35



Results - Testing 620× 187500 Matrix

Figure: Random ID Error and Time Relative to Deterministic ID

Figure: Random SVD Error and Time Relative to Deterministic SVD

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 15 / 35



Table of Contents

1 Low-rank Approximation
Johnson-Lindenstrauss Lemma
Interpolative Decomposition
Singular Value Decomposition
SVD/ID Performance
Eigenfaces

2 Kernel Methods
Kernel Methods
Kernel PCA
Kernel SVM

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 16 / 35



Eigenfaces

Using ideas from [BKP15], our eigenfaces experiment is based on the
LFW dataset [Hua+07]. This dataset contains more than 13,000
RGB images of faces, where each image has dimensions 250× 250.

We can flatten each image to represent it as vector of length
250 · 250 · 3 = 187500.

In our experiment we will only use 620 images from the LFW dataset.
This gives us a data matrix A of size 187500× 620.

We then can perform SVD on the mean-subtracted columns of A.

Figure: Original LFW Images

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 17 / 35



Image Results

We obtain the following eigenfaces from the columns of the matrix U:

Figure: Eigenfaces Obtained using Deterministic SVD

Figure: Eigenfaces Obtained using Randomized SVD

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 18 / 35



Table of Contents

1 Low-rank Approximation
Johnson-Lindenstrauss Lemma
Interpolative Decomposition
Singular Value Decomposition
SVD/ID Performance
Eigenfaces

2 Kernel Methods
Kernel Methods
Kernel PCA
Kernel SVM

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 19 / 35



Kernel Methods

Kernel methods work by mapping the data into a high-dimensional
space to add more structure and encourage linear separability.

Suppose we have a feature map φ : Rn → Rm, m > n.

The ‘kernel trick’ is based on the observation that we only need the
inner products of vectors in the feature space, not the explicit
high-dimensional mappings.

k(x, y) = 〈φ(x), φ(y)〉

Ex. Gaussian/RBF Kernel: k(x, y) = exp
(
−γ‖x− y‖22

)
Kernel methods include kernel PCA, kernel SVM, and more.

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 20 / 35



Randomized Fourier Features Kernel

We can sample random Fourier features to approximate a kernel [RR08].
Let k(x, y) denote our kernel, and p(w) the probability distribution
corresponding to the inverse Fourier transform of k .

k(x, y) =

∫
Rd

p(w)e−jw
T (x−y)dw

≈ 1

m

m∑
i=1

cos(wi
Tx + bi ) cos(wi

Ty + bi ) ,

where wi ∼ p(w), bi ∼ Uniform(0, 2π). For a given m, define

z(x) =
m∑
i=1

cos(wi
Tx + bi )

to yield the approximation k(x, y) ≈ 1
mz(x)z(y)T [Lop+14].

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 21 / 35



Table of Contents

1 Low-rank Approximation
Johnson-Lindenstrauss Lemma
Interpolative Decomposition
Singular Value Decomposition
SVD/ID Performance
Eigenfaces

2 Kernel Methods
Kernel Methods
Kernel PCA
Kernel SVM

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 22 / 35



Data for Kernel PCA Experiments

To test kernel PCA methods, we use a dataset that is not linearly
separable — a cloud of points surrounded by a circle:

Figure: Data used to test kernel PCA methods

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 23 / 35



Randomized Kernel PCA Results

Figure: Random Fourier features KPCA results

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 24 / 35



Table of Contents

1 Low-rank Approximation
Johnson-Lindenstrauss Lemma
Interpolative Decomposition
Singular Value Decomposition
SVD/ID Performance
Eigenfaces

2 Kernel Methods
Kernel Methods
Kernel PCA
Kernel SVM

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 25 / 35



Kernel SVM

We may also use kernel methods for support vector machines (SVM).

The goal of an SVM is to find the (d − 1)-hyperplane that best
separates two clusters of d-dimensional data points.

In two dimensions, this is a line separating two clusters of points in a
plane.

Using the kernel trick, we can project inseparable points into a higher
dimension and run an SVM algorithm on the resulting points.

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 26 / 35



Randomized Kernel SVM

Figure: Randomized Kernel SVM Accuracy and time results as m varies

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 27 / 35



Comparison of Deterministic and Randomized Kernel SVM

Using the MNIST dataset [LC10] we test 10000 images (784 features), for
a fixed γ:

Deterministic Kernel

Accuracy: 0.9195
Time: 37.99s

Randomized Kernel

Accuracy: Mean: 0.891, St. dev. 0.0042
Min: 0.881, Max: 0.9005

Mean Time: 2.14s

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 28 / 35



Comparison of Deterministic and Randomized Kernel SVM

On 1000 MNIST images, we plot the accuracies of the deterministic and
random kernel SVMs as γ varies:

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 29 / 35



Application of Randomized Kernel SVM: Grid Search

Testing 100 γ values to identify the best one:

Deterministic Kernel, Series: 133.03s

Randomized Kernel, Series: 78.97s

Randomize Kernel, Parallel: 41.18s

Best γ value obtained from randomized method corresponds with
either best or second best deterministic γ (3 trials)

K̂ =
1

m
z(X)z(X)T

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 30 / 35



Takeaways

When using large datasets, randomized algorithms are able to
maintain most of the accuracy of their deterministic counterpart,
while offering a huge reduction in computational cost

These algorithms are useful for matrix factorization/decomposition as
well as for kernel approximation

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 31 / 35



References I

ICERM Logo. ICERM. url: https://icerm.brown.edu.

The Singular Value Decomposition (SVD). 2016. url:
https://math.mit.edu/classes/18.095/2016IAP/lec2/

SVD_Notes.pdf.

Brunton, Kutz, and Proctor. Eigenfaces Example. 2015. url:
http://faculty.washington.edu/sbrunton/me565/pdf/

L29secure.pdf.

Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp.
Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions. 2009.
arXiv: 0909.4061 [math.NA].

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 32 / 35

https://icerm.brown.edu
https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf
https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf
http://faculty.washington.edu/sbrunton/me565/pdf/L29secure.pdf
http://faculty.washington.edu/sbrunton/me565/pdf/L29secure.pdf
https://arxiv.org/abs/0909.4061


References II

Gary B. Huang et al. Labeled Faces in the Wild: A Database
for Studying Face Recognition in Unconstrained Environments.
Tech. rep. 07-49. University of Massachusetts, Amherst, Oct.
2007.

William Johnson and Joram Lindenstrauss. “Extensions of
Lipschitz maps into a Hilbert space”. In: Contemporary
Mathematics 26 (Jan. 1984), pp. 189–206. doi:
10.1090/conm/026/737400.

Yann LeCun and Corinna Cortes. “MNIST handwritten digit
database”. In: (2010). url:
http://yann.lecun.com/exdb/mnist/.

David Lopez-Paz et al. Randomized Nonlinear Component
Analysis. 2014. arXiv: 1402.0119 [stat.ML].

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 33 / 35

https://doi.org/10.1090/conm/026/737400
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1402.0119


References III

Mahoney Michael. The Johnson-Lindenstrauss Lemma. Sept.
2009. url: https://cs.stanford.edu/people/mmahoney/
cs369m/Lectures/lecture1.pdf.

Ali Rahimi and Benjamin Recht. Random Features for
Large-Scale Kernel Machines. Ed. by J. C. Platt et al. 2008.
url: http://papers.nips.cc/paper/3182-random-
features-for-large-scale-kernel-machines.pdf.

Lexing Ying et al. Interpolative Decomposition and its
Applications in Quantum Chemistry. 2018. url:
https://www.ki-net.umd.edu/activities/

presentations/9_871_cscamm.pdf.

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 34 / 35

https://cs.stanford.edu/people/mmahoney/cs369m/Lectures/lecture1.pdf
https://cs.stanford.edu/people/mmahoney/cs369m/Lectures/lecture1.pdf
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.pdf
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.pdf
https://www.ki-net.umd.edu/activities/presentations/9_871_cscamm.pdf
https://www.ki-net.umd.edu/activities/presentations/9_871_cscamm.pdf


Website

To explore more visit our website at the following link:
https://rishi1999.github.io/random-projections/

Advani, Crim, O’Hagan Random Projections Summer@ICERM 2020 35 / 35

https://rishi1999.github.io/random-projections/

	Introduction
	Low-rank Approximation
	Johnson-Lindenstrauss Lemma
	Interpolative Decomposition
	Singular Value Decomposition
	SVD/ID Performance
	Eigenfaces

	Kernel Methods
	Kernel Methods
	Kernel PCA
	Kernel SVM

	Conclusion
	References

