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1. Project Overview

The Singular Value Decomposition (SVD) is a popular matrix factorization with fasci-
nating applications. Any matrix A ∈ Rm×n can be factored into a SVD,

A = USV T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and S ∈ Rm×n is a diagonal
matrix. The diagonal entries S(i, i), denoted by σi, satisfy σ1 ≥ σ2 ≥ · · σp ≥ 0 where
p = min(m,n). The σi’s are called the singular values of A, and the number of positive
singular values corresponds to the rank of A. The columns of U and V are called the left
and right singular vectors respectively.

There is an interesting geometric interpretation of the SVD. Using ui and vj to denote
the columns of U and V respectively, the SVD of a 2 × 2 matrix A can be viewed as in
Figure 1.

Another way to write the SVD is as a sum of rank one matrices, i.e.,

(1.1) A =
r∑

i=1

σiuiv
T
i ,

where r is the rank of A. (1.1) suggest a natural way to get a low rank approximation
of A through the SVD. In other words, since σ1 ≥ σ2 ≥ · · · ≥ σr > 0, the initial terms
of the summation (1.1) are more “important” when approximating A. This simple idea
explains why the approximation

(1.2) A ≈
l∑

i=1

σiuiv
T
i ,

Figure 1. Geometrical Interpretation of the SVD
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Figure 2. Low Rank Approximation of an Image

Figure 3. Comparison of the deterministic SVD and the randomized SVD

is often a very good approximation of A even when l << r. That is, A, can be well-
approximated by a lower rank matrix by using the SVD, and this is in the heart of
many applications of the SVD. One fun application of the SVD is in image and video
compression. In figure 2, an image of 1510× 2232 pixels is reconstructed by using (1.2).
We stack the three color channels together to get a 4530 × 2232 matrix and get an
approximation of the original image by using the first l = 5, 20, and 100 singular values
and vectors. It is hard to detect any visual differences between the original image and the
low rank approximation of the image for l = 100. This is a massive compression of data.
When l = 100, we are only using approximately 10% of the memory compared to how
the original image was saved, and this approximation faithfully reconstructs the original
image.

The SVD indeed has numerous applications and beautiful mathematical properties.
It is, however, computationally expensive to exactly compute the SVD of large matrices.
Randomized linear algebra plays an essential role to effectively compute the SVD. In figure
3, a comparison between the (deterministic) SVD and the randomized SVD is given. Both
figures are rank 200 approximations, and while the quality of the approximation is visually
the same, the randomized SVD is much faster.
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2. Project Outlook

In this project, we will explore various interesting applications of the SVD. Students
will create their own applications where SVD may be useful. We will also investigate ways
to improve existing background subtraction algorithms that are used to detect moving
objects in a video as well. Additionally, we will consider ways to make our work accessible
to the general public, which will give students a chance to practice presenting their work
in a fun way that is easy to understand.

Matlab will be the main programming language that will be used in this project.

Suggested readings:

https://sites.math.washington.edu/~morrow/464_16/svd.pdf

https://pdfs.semanticscholar.org/d964/eea67155c2bc26bfc8c03dfc842181af9697.pdf

https://people.maths.ox.ac.uk/trefethen/lec4.ps

https://sites.math.washington.edu/~morrow/464_16/svd.pdf
https://pdfs.semanticscholar.org/d964/eea67155c2bc26bfc8c03dfc842181af9697.pdf
https://people.maths.ox.ac.uk/trefethen/lec4.ps
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