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Focus of the program: The proposed Summer@ICERM 2023 research topics include projects in a variety
of subtopics in graph theory and linear algebra stemming from the flexible-tile model of DNA self-assembly.
Projects include computational experimentation and coding to efficiently generate and test hypotheses con-
cerning theoretical optimal constructions of DNA nanostructures.

1 Graph Theoretical Model of DNA Self-Assembly

DNA self-assembly is a term to describe the process of a collection of branched DNA molecules bonding
together, without external direction, to form a desired nanostructure. This process is integral to the field of
DNA nanotechnology [22]. Synthetic DNA molecules have been designed that self assemble into a variety of
nanostructures, including numerous polyhedra [4, 12, 13, 24, 28], arbitrary graphs [16, 21, 25], and the first
macroscopic self-assembled 3D DNA crystals [29]. Molecular scaffoldings made of DNA have wide-ranging
potential, such as biomolecular computing and in drug-delivery methods (see [1, 5, 7, 8, 11, 17, 18, 19, 20,
23, 26, 27]).

The introduction of a graph theoretical formalization for exploring the combinatorial properties of self-
assembly of DNA molecules was first introduced by Jonoska et al. in [15]. A branched junction molecule
whose flexible k-arms are strands of DNA is represented in the abstract as a tile, which becomes a vertex
of degree k in a graph (see Figure 1). We represent the complementary cohesive-ends or bond-edges of
these tiles using letter labels. For example, bond-edge types a and â represent complementary sequences of
bases (see Figures 2 and 4). Thus we can combinatorially represent a k -armed branched-junction molecule
with bond-edge types a1, ..., ak using a tile t = {a1, ..., ak}. We call a collection of tiles (each of which can
theoretically be used “infinitely many” times) a pot (see Figure 3).

Figure 1: 3 -armed branched junction molecule (left) with ex-
ample tile representation (right)

Figure 2: Representing the com-
plementary cohesive end types
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Figure 3: A pot of 4 different tile types, P = {T1 = {a, b, x}, T2 = {â, b̂, x̂}, T3 = {a, b̂, x}, T4 = {â, b, x̂}}.

Figure 4: A visualization of the formation
of bond-edges.

Figure 5: Example of a graphical representation of a
complete complex consructed from pot P = {T1 =
{a4}, T2 = {â2, x, x̂}, T3 = {â2, x, x̂}}.

The central focus of research with the flexible-tile model of DNA self-assembly is efficient construction
of certain target complexes (see Figures 5 and 6). This generally involves finding accurate bounds for the
number of tile types and bond-edge types in pots constructing selected graphs. Given a target graph, G,
one can seek to determine the minimum numbers of tile and bond types needed to construct the graph; we
denote these minimum numbers by Ti(G) and Bi(G), respectively, where i refers to one of the scenarios below.

Scenario 1: A graph with a fewer number of vertices than the target graph may be constructed from a pot
of tiles.
Scenario 2: A graph with the same number of vertices, but not isomorphic to the target graph, may be
constructed from a given pot of tiles. However, no graph with fewer vertices may be constructed.
Scenario 3: No graph with fewer vertices nor non-isomorphic graphs with the same number of vertices as
the target graph may be constructed from a given pot of tiles.

The projects proposed here revolve around the exploration of the graph theoretical and combinatorial
properties of DNA self-assembly, as well as development of computational tools to aid in answering funda-
mental questions that arise.

2 Project Descriptions

2.1 Optimal Pots for k-Regular Graphs

In 2014 Ellis-Monaghan et. al. [6] showed that for any k-regular graph G, T1(G) = 1 or 2 if k is even or
odd, respectively. Some examples of k-regular graphs have been explored in Scenarios 2 and 3, such as cycle
graphs, Platonic Solid graphs, and the Rook’s graph [2, 6, 9]. However, no overarching theory regarding
general optimization strategies for k-regular graphs in Scenarios 2 and 3 currently exists. We propose the
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following items for investigation.

1. Find explicit pots of tiles for certain families of k-regular graphs such as crown graphs, cage graphs,
and n-circulant graphs.

2. For fixed values of k, search for patterns common to pots of tiles for k-regular graphs and establish
conjectures regarding bounds for B2(G), T2(G), B3(G), and T3(G).

3. Collaborate with those working on projects described in Sections 2.3 and 2.4 to computationally verify
pots and further progress.
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Figure 6: Scenario 2 labeling of Icosahedron graph, a 3-regular graph

2.2 Optimal Pots for Graph Families Exhibiting Multi-Dimensional Growth

Families of graphs that exhibit growth in two or more distinct ways or “dimensions” have proven especially
challenging when determining optimal pots for Scenarios 2 and 3. For example, in [10] it is shown that for
the Lollipop and Tadpole graph families (see Figure 7) the values for Scenario 2 have nuanced dependence
on both the order of the complete or cycle subgraph and the extending path subgraph. We propose the
following items for investigation.

1. Discover explicit pots of tiles for certain graph families with multi-dimensional growth, such as lattice
graphs, Mongolian tent graphs, and stacked book graphs.

2. Search for patterns common to pots of tiles for graph families exhibiting multi-dimensional growth.
Determine how pots must be modified to accommodate “growth” in one isolated aspect.

3. Collaborate with those working on projects described in Sections 2.3 and 2.4 to computationally verify
pots and further progress.

2.3 Expected Output of Pots

Much of the existing work within the flexible-tile model of DNA self-assembly has focused on finding an
optimal pot that will construct a given graph [2, 6]. Whenever exploring this question in Scenarios 2 and
3, one must consider whether other graphs of lesser or equal orders can be constructed from proposed pots.
However, little is known about the general problem of what types of graphs can be constructed from a given
pot. In [2], it was shown that determining the set of graphs realized by a given pot is an NP-hard problem.
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Figure 7: Lollipop graph (left) and Tadpole graph (right)

For this reason, it is desirable to be able to classify graphs in the output of a pot in special settings. In [14],
two algorithms are presented which construct a graph for any pot with exactly one bond-edge type and at
least three tile types. We propose the following items for investigation.

1. Given a pot with two or more bond-edge types, find an algorithm that will construct at least one type
of graph realized by the pot of tiles.

2. Generate examples of graphs that can be constructed from the pots of known graphs such as complete
bipartite graphs, platonic solids, cycle graphs, etc.

3. Find relationships between the construction matrices of different graphs within the same family, further
clarifying which orders of graphs can be constructed by the corresponding pots.

2.4 Algorithmic Generation of Pots

Finding an optimal pot to realize a target graph requires sorting through a generic list of possible tile types.
This list grows quickly as the number of bond-edge types and/or vertex degree increases. For example, when
considering two bond-edge types, there are 10 different tiles of degree two. To this end, a useful program
would be one that takes in the degree sequence of a graph and a desired number of bond-edge types and
outputs all possible tile types given those constraints. To build upon this foundation, the program can be
enhanced to omit some types of tiles that are always impermissible in Scenarios 2 or 3. For example, the tile
type {a, â} is generally forbidden in Scenarios 2 and 3, as a graph of order 1 with a loop edge or a graph of
order 2 with a multiple-edge can be constructed from this tile (see Figure 8).
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Figure 8: Examples of order 1 and 2 graphs constructed from tile type {a, â}

In addition, some sets of two or more tiles constitute immediate violations in these scenarios; consider
tiles {a, b} and {â, b̂}, which can construct a graph of order 2. We propose the following coding initiatives
to support these explorations.

1. Write a program that generates all possible tile types that could be used in the construction of a graph
when given a degree sequence and maximum number of bond-edge types.

2. Modify such a program to avoid pots with subsets consisting of tile types that are “automatic” failures
in Scenarios 2 and 3.
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2.5 Discovering Relationships Between Bi(G) and Ti(G) for i = 2, 3

Theorem 2 of [6] states that T2(G) ≥ B2(G) + 1, which serves as an incredibly useful bound when working
in Scenario 2. Indeed, for many basic graph families, such as cycle graphs and complete graphs, the values
of Bi(G) and Ti(G) follow the pattern Ti(G) = Bi(G) + 1 for i = 2, 3. However, graphs exist for which
T2(G)−B2(G) is arbitrarily large [6] and for which the values for Scenarios 2 and 3 differ by up to a factor
of four [3]. Further complexity is illustrated in [2], where an example is given of a graph G of order 6 (see
Figure 9) for which no pot can simultaneously achieve the values for B3(G) and T3(G).

1 3 5

2 4 6

Figure 9: 2× 3 triangle lattice graph

Meanwhile, for every graph that has been investigated in the literature, B2(G) and T2(G) have been
achieved by the same pot. This naturally provokes questions about whether there can be any persistent
relationship between Bi(G) and Ti(G) for i = 2, 3, and about types of graphs for which no pot achieving
both exists. We propose the following items for investigation:

1. Determine whether there exist a pot that will achieve B2(G) and T2(G) simultaneously for a given
graph G. Prove that such a pot always exists or find a counterexample.

2. Generate examples of graphs of various orders for which no pot achieves both B3(G) and T3(G); provide
proofs that no such pots exist.

3. Collect and analyze existing data on values of B3(G) and T3(G) for various graphs and graph families
and search for meaningful possible relationships or convincing arguments.
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