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Program Abstract

Mathematical modeling allows one to describe dynamics of the real world by translating the knowl-
edge and beliefs of interactions into the language of mathematics. For this reason, mathematical
modeling is not only a useful technique for describing natural occurrences, but it also allows one to
address questions and test hypotheses that may not be feasible to study in reality. In general, mod-
eling requires compromise. In order to avoid complicated systems, mathematical modelers must
first identify the most important components of a system to include in the model, excluding every-
thing else. Even with these simplifying assumptions, mathematical models can be used to develop
scientific understanding, test the effect of changes in a system, and aid in decision-making. The pro-
posed Summer@ICERM 2026 projects center around three approaches to mathematical modeling
in both pure and applied mathematics spanning epidemiology, graph theory, and combinatorics.

1 Disease Transmission and Control in Local Communities

This project will investigate the community transmission of Clostridioides difficile (C. difficile)
using both systems of ordinary differential equations (ODEs) and agent-based models (ABMs) in
order to determine optimal strategies for mitigating the spread of this bacteria. While C. difficile
remains one of the most common causes of healthcare-associated infections in the United States [33,
51], data from the CDC’s Emerging Infections Program has shown a decrease in the overall burden
of C. difficile in both healthcare settings and long-term care facilities (LTCFs) from 2011 to 2017.
During that same period, no such decrease occurred in community-associated infections, which
accounted for nearly 50% of the burden of C. difficile infection (CDI) in 2017 [21].

Many mathematical models using ODEs have previously been developed to represent nosoco-
mial transmission [5, 9, 23, 24, 32, 35, 50, 58, 59, 60]; however, models of C. difficile community
spread are scarce [33]. Furthermore, increased awareness of the role of environmental transmission
in the spread of some pathogens has led to increased development of models that incorporate envi-
ronmental components [4, 9, 10, 12, 32, 50, 51, 60, 66]. Our ODE model of C. difficile spread in a
hospital ward [60] was the first of its kind that explicitly incorporated the environmental contami-
nation of surfaces with two environmental compartments in addition to the more standard patient
classes. Of those models of C. difficile in communities [29, 30, 41, 44, 46], only Otten et al. [46]
incorporated an environmental transmission pathway; however, they have not calibrated this model
with epidemiological data.

Following up our work in [60], we have since developed ABMs of C. difficile transmission
in both hospitals [38] and LTCFs [6], along with an ODE model of its spread in LTCFs [13].
Central to our work, we have incorporated the effect that environmental surfaces contribute towards
the spread of disease. In this proposed research, we aim to continue examining the impact of
environmental contamination on the spread of C. difficile by modeling its transmission within
localized communities using multiple models, such as individual community models, LTCFs in
combination with hospitals, and communities in combination with hospitals and/or LTCFs. Since



we have developed mathematical models of disease spread in hospitals and LTCFs, much of the
structure of the new models can be based on these past models. New parameter values will need
to be collected along with updated assumptions about transmission pathways in the community to
ensure that the proposed mathematical models remain feasible.

Recommendations from mathematical models regarding disease control are sensitive to underly-
ing assumptions, and there are trade-offs when choosing different modeling techniques. Widely-used
ODE models assume common behavioral interactions and typically assume direct transmission from
infected to susceptible individuals. Such models typically do not account for spatial heterogeneity,
a key feature of the epidemiology of a pathogen with an environmental reservoir, such as C. diffi-
cile [47, 57, 63, 64]. Conversely, ABMs consider the individual behaviors of system components by
defining a set of rules that govern how individuals interact on a spatial grid. These types of models
rely heavily on probabilities, which allow for the randomness of individual decision-making to be
simulated. By developing mathematical models using both techniques, the analysis of both models
can be compared to determine the most effectual strategies for mitigating the spread of C. difficile
in communities, especially with movement between a hospital and LTCF.

After developing the system of ODEs, we will use a combination of literature review and esti-
mation techniques, such as the method of least squares, to determine appropriate parameter values
for our model. We will then analyze the ODE model with a global sensitivity analysis [43] using
Latin Hypercube Sampling and Partial Rank Correlation Coeflicients to determine which param-
eters lead to the greatest changes in the incidence of colonization. The results of the sensitivity
analysis will inform potential control strategies to mitigate disease spread and be the basis for
applying Optimal Control Theory, a method that will allow us to determine time-optimal varying
parameters that most effectively reduce incidence of colonized and diseased [37]. Model simula-
tions and analysis will be completed using MATLAB. Students with knowledge of calculus and the
interpretation of derivatives can succeed in this project even without explicit study of differential
equations. Programming experience is a bonus but is not required for successful completion of this
project.

The ABM will be built in NetLogo which works on a grid where each patch on the grid can
be labeled to represent its type. The considered communities will be gridded and translated into
the NetLogo Graphical User Interface (GUI). After developing the foundation of the ABMs, we
will incorporate agents with individualized characteristics. Every ABM consists of submodels that
dictate the movement between agents. To replicate interactions within the community, we will
code procedures that dictate how an individual operates daily. Due to the stochasticity embed-
ded in ABMs and to best assess the impact of the control intervention strategies, we will run 100
iterations over a one-year simulated time period with each combination of parameter values (repre-
senting different control strategies). The model will be run on a fifteen-minute time-step using the
BehaviorSpace tool in NetLogo, which allows us to specify the various parameter combinations we
want to simulate and the resulting outputs of interest. Because of the computing power required to
run these simulations, we will utilize parallel processing and high performance computing. These
simulations will aid in evaluating effective interventions for reducing disease and colonization inci-
dence. Students do not need programming experience to be successful in this project, but it is a
bonus.



2 Graph Theoretical Modeling of DNA Self-Assembly

DNA self-assembly is a rapidly advancing field with the unique properties of double-stranded DNA
molecules making DNA a valuable structural material from which to form nanostructures, a process
integral to the field of DNA nanotechnology [48, 56, 55], including numerous polyhedra [8, 22, 25,
61, 69], arbitrary graphs [27, 52, 65], and a variety of DNA and RNA knots [39, 40, 62]. This project
explores the graph theoretical and combinatorial properties of DNA self-assembly which are used to
form nanostructures. These nanostructures offer
promise for emergent applications in nanoelectron-
ics, biosensors, biomolecular computing, drug deliv-
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Figure 1: Representation of the comple-
mentary cohesive end types (left) and
the formation of bond-edges (right).

ness [1, 14, 16, 17, 20, 28, 31, 42, 45, 55, 67, 68|.
The introduction of a graph theoretical formalization for
exploring the combinatorial properties of self-assembly of
DNA molecules was first introduced by Jonoska et al. [26].
A branched junction molecule whose flexible k-arms are
strands of DNA is represented in the abstract as a tile,
which becomes a vertex of degree k in a graph. We rep-
resent the complementary cohesive-ends or bond-edges of

these tiles using letter labels. For example, bond-edge
types a and a represent complementary sequences of bases (see Figure 1). This allows us to combi-
natorially represent a k-armed branched-junction molecule with bond-edge types a1, ..., a; using a
tile t = {a1, ..., ar}. We call a collection of tiles (each of which can theoretically be used “infinitely
many” times) a pot.

The central focus of research with the flexible-tile
model of DNA self-assembly is the efficient construction
of certain target complexes (see Figure 2). This generally
involves finding accurate bounds for the number of tile
types and bond-edge types in pots constructing selected
graphs. Given a target graph G, one can seek to deter-
mine the minimum numbers of tile and bond types needed
to construct the graph under various constraints [15].
This application of graph theory is both relevant and en-
ticing given the wide range of uses DNA self-assembly has
in biomedical applications. These research projects re-
volve around the exploration of the graph theoretical and
combinatorial properties of DNA self-assembly, as well as
the development of computational tools to aid in answering fundamental questions that arise. This
project lends itself well to computational experimentation. In particular, linear algebra and pro-
gramming are used to help answer our fundamental questions. Given a pot P of tiles, in order for
a complete complex to be formed and no smaller graph to be formed, the proportions of different
tile types must satisfy a system of equations often represented as an augmented matrix called the
construction matriz, denoted M (P) [15, 26]. The construction matrix is a useful way to determine
whether pots can generate graphs smaller than the target graph.

Figure 2: Example of a graphical
representation of a complete complex
constructed from pot P = {T} =
{a*}, Ty = {a?, z, 2}, Ty = {a* z,2}}.



There is also a need for exhaustive searches for specific solutions and for creating algorithmic
approaches to solutions, such as those found in [3, 14, 15, 18, 19, 49]. This particular program will
build off the progress from the 2023 Summer@ICERM Program and focus on the exploration of the
graph theoretical and combinatorial properties of DNA self-assembly, as well as the development
of computational tools to aid in answering fundamental questions that arise. Students do not need
programming experience nor have any experience in graph theory or linear algebra to be successful
in this project, but having experience in an introduction to proofs course would be very helpful for
this project.

We expect students in this project to create, expand, and improve current software and proof
methods used to find and check optimal solutions for k-regular graphs and graphs which exhibit
multi-dimensional growth. Additional information can be found below.

Potential Project Descriptions

Finding Optimal Pots for k-Regular Graphs: In 2014 Ellis-Monaghan et al. [15] showed that
for any k-regular graph G, T1(G) = 1 or 2 if k is even or odd, respectively. Some examples of k-
regular graphs have been explored in Scenarios 2 and 3, such as cycle graphs, Platonic Solid graphs,
and the Rook’s graph [2, 15, 18]. However, no overarching theory regarding general optimization
strategies for k-regular graphs in Scenarios 2 and 3 exists. One of our research goals is to find
explicit pots of tiles for certain families of k-regular graphs and search for patterns common to
pots of tiles for k-regular graphs and establish conjectures regarding bounds for bond-edge and tile
types in Scenarios 2 and 3.

Determine Optimal Pots for Graph Families Exhibiting Multi-Dimensional Growth:
Families of graphs that exhibit growth in two or more distinct ways or “dimensions” have proven
especially challenging when determining optimal pots for Scenarios 2 and 3. For example, in [19] it
is shown that for the Lollipop and Tadpole graph families the values for Scenario 2 have nuanced
dependence on both the order of the complete or cycle subgraph and the extending path subgraph.
We aim to find explicit pots of tiles for certain graph families with multi-dimensional growth, such
as lattice graphs, fan graphs, Mongolian tent graphs, and stacked book graphs.

List of Proposed Research Topics

1. Optimize design structures for families of graphs such as graphs with multiple growth patterns
and k-regular graphs.

2. Create, expand, and improve the current software used to find and check optimal solutions.

3 Combinatorial Models for Kostka-Foulkes Polynomials

In the field of algebra, we often use certain polynomials to classify, or even just count, abstract
structures. Kostka-Foulkes polynomials count certain multiplicities in representation theory, and
they come in four classical types: A, B, C, and D, corresponding to root systems of the same
names. It has long been known that these polynomials have non-negative integer coefficients. This
was explicitly shown for the Kostka-Foulkes polynomials of type A through the use of a statistic


https://icerm.brown.edu/summerug/2023/

called charge [34]. However, it has been a long standing problem to explicitly show this non-
negativity in types B, C, and D. In this project, we will consider a recently developed statistic on
Kostka-Foulkes polynomials that is equivalent to the charge in type A but was designed to extend
to the other types more easily [36].

As opposed to the previous attempts us-
ing tableau models, this new statistic is based () (] (J ( []
on the definition of a Kostka-Foulkes polyno- 1 g a ] 14
mial as an alternating sum over certain vec-
tors called Kostant partitions. The new statis- s /
tic constructs, via crystals graphs (combina-
torial models for representations of quantum
groups in the form of colored directed graphs [(”’ ) [ ) [(”
[7]), a sign-reversing involution which cancels
all the negative terms in the alternating sum /
mentioned above. The resulting positive ex-
pansion expresses the corresponding Kostka-
Foulkes polynomial in terms of a simple statistic
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on the uncanceled Kostant partitions (namely,
the number of parts of the Kostant partition).

In practice, this is done by modifying the as-
sociated crystal graphs in such a way that the
vertices correspond to the terms in the Kostka-
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An example corresponding
to a type A Kostka-Foulkes polynomial
2+ B34+ 2+ B3+ 1 — 2= 3— 12— 3+ ¢* which
simplifies to t* + ¢2, whose terms correspond to

Figure 3:

Foulkes polynomials. Each vertex comprises of
a Symmetric group element and a combinato-
rial interpretation of a Kostant partition which
together correspond to a term in the original polynomial (the number of filled boxes is the power of
the term with its coefficient being the sign of the symmetric group element). A matching on each
connected component corresponds to the cancellation of terms in the polynomial. The singleton
components of the graph then give way to the simplified version of the polynomial (see Figure 3).
The important aspect of this new model is that it relies on the underlying crystal theory, which is
primarily independent of the crystal type (referring to the types A, B, C, and D).

Students will learn about root systems in all four classical types (visualizing them as vectors
in R™), the associated Weyl groups (viewed as signed permutations), and their associated crystal
structures (certain colored directed graphs with Kostant partitions as vertices). They will then
build off existing Python code that extends the type A model from [36] to types B, C, and D using
crystal structures which were developed in [11, 53, 54]. The heart of the project will be to discern
a matching on these encoded crystal graphs which successfully describe the desired cancellation of
terms in the corresponding Kostka-Foulkes polynomials in types B, C' and D. Students do not need
programming experience to be successful in this project, but it is a bonus. Having had a semester
of Linear Algebra or Multivariable Calculus prior the program would be beneficial.

the two singleton components with four and two
filled values, respectively.
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