Tripod Configurations

Eric Chen, Nick Lourie, Nakul Luthra

Summer@ICERM 2013

August 8, 2013
Overview

1. Introduction
 - Tripod Configurations in the Plane
 - Extension to Polygons
 - Results

2. Proof of Theorem 7

3. An Introduction to Morse Theory
 - Motivations
 - Major Results
 - Morse Theory on Manifolds with Boundary

4. Morse Theory and Tripod Configurations
 - Planar Case
 - Spherical Case
 - Hyperbolic Plane Case
Definition 1
A tripod configuration of a closed plane curve γ consists of three normal lines dropped from γ meeting at a single point (the tripod center) and making angles of $\frac{2\pi}{3}$.

Definition 2
A locally convex curve is a curve with nowhere vanishing curvature.
Definition 1
A tripod configuration of a closed plane curve γ consists of three normal lines dropped from γ meeting at a single point (the tripod center) and making angles of $\frac{2\pi}{3}.$
Definition 1
A tripod configuration of a closed plane curve γ consists of three normal lines dropped from γ meeting at a single point (the tripod center) and making angles of $\frac{2\pi}{3}$.

Definition 2
A locally convex curve is a curve with nowhere vanishing curvature.
Existence of Tripod Configurations (Regular Polygons)

Definition 3:
A tripod configuration of a closed polygon \(P \) consists of three lines dropped from vertices of \(P \) meeting at a single point and making angles of \(\frac{2\pi}{3} \) such that each line is normal to a support line of \(P \) at the vertex through which it passes.

Theorem 4 (Summer@ICERM 2013):
A regular polygon with \(n \) vertices has \(n \) tripod configurations if \(3 \nmid n \) and \(\frac{n}{3} \) tripod configurations if \(3 \mid n \).
Definition 3

A tripod configuration of a closed polygon P consists of three lines dropped from vertices of P meeting at a single point and making angles of $\frac{2\pi}{3}$ such that each line is normal to a support line of P at the vertex through which it passes.
Definition 3
A tripod configuration of a closed polygon P consists of three lines dropped from vertices of P meeting at a single point and making angles of $\frac{2\pi}{3}$ such that each line is normal to a support line of P at the vertex through which it passes.

Theorem 4 (Summer@ICERM 2013)
A regular polygon with n vertices has n tripod configurations if $3 \nmid n$ and $\frac{n}{3}$ tripod configurations if $3 \mid n$.
Existence of Tripod Configurations (Plane Curves)

Theorem 5 (Tabachnikov 1995)
For any smooth convex closed curve there exist at least two tripod configurations.

Theorem 6 (Kao and Wang 2012)
If γ is a closed locally convex curve with winding number n, then γ has at least $\frac{n}{2}$ tripod configurations.

Theorem 7 (Summer@ICERM 2013)
If γ is a closed locally convex curve with winding number n, then γ has at least $2\left\lfloor \frac{n}{2} \right\rfloor + 3$ tripod configurations.

Every plane curve has a tripod configuration.

Eric Chen, Nick Lourie, Nakul Luthra (S@I)
Tripod Configurations
August 8, 2013 5 / 33
Theorem 5 (Tabachnikov 1995)

For any smooth convex closed curve there exist at least two tripod configurations.
Existence of Tripod Configurations (Plane Curves)

Theorem 5 (Tabachnikov 1995)

For any smooth convex closed curve there exist at least two tripod configurations.

Theorem 6 (Kao and Wang 2012)

If γ is a closed locally convex curve with winding number n, then γ has at least $\frac{n^2}{3}$ tripod configurations.
Existence of Tripod Configurations (Plane Curves)

Theorem 5 (Tabachnikov 1995)
For any smooth convex closed curve there exist at least two tripod configurations.

Theorem 6 (Kao and Wang 2012)
If γ is a closed locally convex curve with winding number n, then γ has at least $\frac{n^2}{3}$ tripod configurations.

Theorem 7 (Summer@ICERM 2013)
1. If γ is a closed locally convex curve with winding number n, then γ has at least $2\left\lfloor \frac{n^2+2}{3} \right\rfloor$ tripod configurations.
2. Every plane curve has a tripod configuration.
Given a triangle ABC, the largest equilateral triangle circumscribing it is its antipedal triangle with respect to its first isogonic center.

Lemma 9
Let p, q, r be noncollinear points on a closed plane curve $γ$ and let T be an equilateral triangle with each side passing through one of the three points. Then the equilateral triangle circumscribing $γ$ with sides parallel to T is at least as large as T.

Lemma 10
The largest equilateral triangle circumscribing a closed plane curve meets the curve exactly once per side.
Lemma 8

Given a triangle ABC, the largest equilateral triangle circumscribing it is its antipedal triangle with respect to its first isogonic center.
Proof of Theorem 7

Lemma 8
Given a triangle ABC, the largest equilateral triangle circumscribing it is its antipedal triangle with respect to its first isogonic center.

Lemma 9
Let p, q, r be noncollinear points on a closed plane curve γ and let T be an equilateral triangle with each side passing through one of the three points. Then the equilateral triangle circumscribing γ with sides parallel to T is at least as large as T.
Proof of Theorem 7

Lemma 8

Given a triangle ABC, the largest equilateral triangle circumscribing it is its antipedal triangle with respect to its first isogonic center.

Lemma 9

Let p, q, r be noncollinear points on a closed plane curve γ and let T be an equilateral triangle with each side passing through one of the three points. Then the equilateral triangle circumscribing γ with sides parallel to T is at least as large as T.

Lemma 10

The largest equilateral triangle circumscribing a closed plane curve meets the curve exactly once per side.
At least how many critical points does a smooth function on a circle have?
• At least how many critical points does a smooth function on a circle have?
• At least how many critical points does a smooth function on S^n have?
Let $f : T^2 \to \mathbb{R}$ be the height function, or projection onto the z-axis.
Let $f : T^2 \to \mathbb{R}$ be the height function, or projection onto the z-axis.

Let $M^a = \{ x \in T^2 \mid f(x) < a \in \mathbb{R} \}$.
Let \(f : T^2 \to \mathbb{R} \) be the height function, or projection onto the z-axis.

let \(M^a = \{ x \in T^2 \mid f(x) < a \in \mathbb{R} \} \).

\(M^a \) is every point in \(T^2 \) below the height of \(a \).
The bottom is a critical point, a local minimum

The index of the Hessian at the local minimum is zero

M^{a_1} is homotopic to a 0-cell
The bottom point of the inner circle is a critical point, a saddle point.
The index of the Hessian at the point is one.
\(M^{a_1}\) is homotopic to a disk with a 1-cell attached.
We are not at a critical point of the function

M^{a_3} is homotopic to M^{a_2}, there has been no change in the homotopy class.
The top point of the inner circle is a critical point, a saddle point
The index of the Hessian at the point is one
M^a is homotopic to a cylinder with a 1-cell attached
The top point of the torus is a critical point, a local maximum.
- The index of the Hessian at the point is two.
- \(M^{a_5} \) is homotopic to a punctured torus with a 2-cell attached.
Definition 11 (non-degenerate)

A critical point of a function f is said to be non-degenerate if the Hessian of f at p is non-singular.
Basic Definitions

Definition 11 (non-degenerate)
A critical point of a function f is said to be non-degenerate if the Hessian of f at p is non-singular.

Definition 12 (Morse index)
The Morse index of a critical point p of a function f is the index of the Hessian of f at p, i.e. the dimension of the largest subspace on which the Hessian is negative definite.
Lemma 13 (The Morse Lemma)

If p is a non-degenerate critical point of f, then \(\exists \phi \), a chart of M, such that \(x_i(p) = 0 \forall i \) and \(f(x) = f(p) - x_1^2 - \cdots - x_k^2 + x_{k+1}^2 + \cdots + x_n^2 \) where \(k \) is the index of p.
Lemma 13 (The Morse Lemma)

If p is a non-degenerate critical point of f, then $\exists \phi$, a chart of M, such that $x_i(p) = 0 \forall i$ and $f(x) = f(p) - x_1^2 - \cdots - x_k^2 + x_{k+1}^2 + \cdots + x_n^2$ where k is the index of p.

Theorem 14

Given $a < b$, if $f^{-1}[a, b]$ is compact and no critical values lie in the interval $[a, b]$ then M^a is a deformation retract of M^b.
Lemma 13 (The Morse Lemma)

If p is a non-degenerate critical point of f, then $\exists \phi$, a chart of M, such that $x_i(p) = 0 \forall i$ and $f(x) = f(p) - x_1^2 - \cdots - x_k^2 + x_{k+1}^2 + \cdots + x_n^2$ where k is the index of p.

Theorem 14

Given $a < b$, if $f^{-1}[a, b]$ is compact and no critical values lie in the interval $[a, b]$ then M^a is a deformation retract of M^b.

Most importantly, this implies that M^a has the same homotopy class as M^b.
The preceding lemma and theorem allow us to prove the following:

Theorem 15

If p is a non-degenerate critical point with Morse index k, $f(p) = a$ and then if we choose ϵ small enough so that $f^{-1}[a - \epsilon, a + \epsilon]$ is compact and contains no critical values other than p, then $M^{a+\epsilon}$ is of the homotopy class of $M^{a-\epsilon}$ with a k-cell attached.
The preceding theorems show that the number of critical points is equal to the number of cells in the cell structure of the manifold defined by the function f.
The Theorems show that the number of critical points is equal to the number of cells in the cell structure of the manifold defined by the function f.

This equality of the cell structure and the critical points can be used to prove certain inequalities about critical points from the homotopy class of a manifold.
Corollary 16

Let \(C^\lambda \) denote the number of critical points of \(f \) with Morse index \(\lambda \).

\[
\sum (-1)^\lambda C^\lambda = \chi(M)
\]
Corollary 16

Let C^λ denote the number of critical points of f with Morse index λ.

$$\sum (-1)^\lambda C^\lambda = \chi(M)$$

Corollary 17

$C^\lambda \geq b_\lambda(M)$

Where $b_\lambda(M)$ is the λ'th Betti number of M.
Our work mainly uses results about Morse Theory on manifolds with boundary.

Francois Laudenbach published a paper on Morse Theory on manifolds with boundary in 2010.

He derives Morse inequalities using a chain complex defined on manifolds with boundary.
Two new types of critical points appear on the boundary, when the gradient of f is normal to it.
Two new types of critical points appear on the boundary, when the gradient of f is normal to it.

Type N (Neumann) critical points occur when the gradient of f points inward along the boundary.

Type D (Dirichlet) critical points occur when the gradient of f points outward along the boundary.
Two new types of critical points appear on the boundary, when the gradient of f is normal to it.

- Type N (Neumann) critical points occur when the gradient of f points inward along the boundary.
- Type D (Dirichlet) critical points occur when the gradient of f points outward along the boundary.
Morse Theory on Manifolds with Boundary

We obtain new Morse inequalities from the following fact:

Theorem 18

Let C^λ and B^λ be the number of critical points of index λ in the interior and on the boundary (of D type) respectively. If $P(t)$ is the Poincare polynomial of M, $C(t) = \sum C^\lambda t^\lambda$, and $B(t) = \sum B^\lambda t^{\lambda+1}$, then:

$$B(t) + C(t) - P(t) = (1 + t)Q(t)$$

Where $Q(t)$ is a polynomial with non-negative integer coefficients.
We show that any convex curve in the plane and any convex curves sufficiently close to a circle in spherical and hyperbolic geometry have at least two tripod configurations.
Morse Theory and Tripods - Planar Case

\[f : S^1 \times S^1 \times S^1 \times \overline{D} \rightarrow \mathbb{R}, (x, y, z, p) \mapsto d(x, p) + d(y, p) + d(z, p) \]

Critical points of \(f \) where \(p \in \mathbb{D} \) are tripod points.
Parallel curves have the same tripod configurations. “Boundary” critical points of f when $p \in \partial D$ and the evolute is small:
Morse Theory and Tripods - Planar Case

Use osculating circles to approximate the curve near “boundary” critical points of f to compute the Hessian up to second order approximation:
\[p = (-r \cos \alpha, -r \sin \alpha) \approx (-r(1 - \frac{\alpha^2}{2}), -r\alpha) \]

\[x = ((r + \epsilon) \cos \beta, -(r + \epsilon) \sin \beta) \approx (-r + \epsilon)(1 - \frac{\beta^2}{2}), -(r + \epsilon)\beta) \]

\[y = (d + R \cos \gamma, R \sin \gamma) \approx (d + R(1 - \frac{\gamma^2}{2}), R\gamma) \]

\[z = (d + R \cos \delta, R \sin \delta) \approx (d + R(1 - \frac{\delta^2}{2}), R\delta). \]
Morse Theory and Tripods - Planar Case

\[
\begin{pmatrix}
\frac{r(r+\epsilon)}{\epsilon} - \frac{2r(d+R)}{d+R+r} & -\frac{r(r+\epsilon)}{\epsilon} & \frac{Rr}{d+R+r} & \frac{Rr}{d+R+r} \\
-\frac{r(r+\epsilon)}{\epsilon} & -\frac{2r(d+R)}{d+R+r} & 0 & 0 \\
\frac{R}{d+R+r} & 0 & -\frac{R(d+r)}{d+R+r} & 0 \\
\frac{R}{d+R+r} & 0 & 0 & -\frac{R(d+r)}{d+R+r}
\end{pmatrix}
\]

Theorem 19

Given an \(n \times n \) matrix \(A \), call the determinant of the \(i \times i \) upper-left corner the \(i \)th leading minor and denote it by \(d_i \). Assume that \(A \) is symmetric and the \(d_i \)'s are non-zero...Then \(d_1, d_2/d_1, d_3/d_2, \ldots, d_n/d_{n-1} \) are diagonal entries in a diagonalization of \(A \).
Morse Theory and Tripods - Planar Case

Morse indices
Case 1:

\[
\begin{cases}
4, & d > 0 \\
3, & d < 0
\end{cases}
\]

Case 2:

\[
\begin{cases}
3, & d > 0 \\
2, & d < 0
\end{cases}
\]
Theorem 18

Let C^λ and B^λ be the number of critical points of index λ in the interior and on the boundary (of D type) respectively. If $P(t)$ is the Poincare polynomial of M, $C(t) = \sum C^\lambda t^\lambda$, and $B(t) = \sum B^\lambda t^{\lambda+1}$, then:

$$B(t) + C(t) - P(t) = (1 + t)Q(t)$$

Where $Q(t)$ is a polynomial with non-negative integer coefficients.

A convex curve has as many “short” diameters ($d < 0$) as “long” diameters ($d > 0$). Let m be the number of “short” (“long”) diameters.

$$2mt^5 + 6mt^4 + 2mt^4 + 6mt^3 + C(t) - (1 + t)^3 t^2 = (1 + t)Q(t)$$

$$(1 + t)(2mt^4 + 6mt^3) + C(t) - (1 + t)^3 t^2 = (1 + t)Q(t)$$

$$6(1 + t)|C(t)$$

So the curve has at least 2 tripod configurations.
Morse Theory and Tripods - Spherical Case

The “small evolute” condition becomes a “close to a circle” condition on the sphere. Use a second order approximation with geodesic circles.

\[\text{op} = r \]
\[\text{ox} = r + \varepsilon \]
\[\text{oq} = d \]
\[\text{qy} = \text{qz} = R \]
Morse indices (same as in planar case)

Case 1:

\[
\begin{cases}
4, & d > 0 \\
3, & d < 0
\end{cases}
\]

Case 2:

\[
\begin{cases}
3, & d > 0 \\
2, & d < 0
\end{cases}
\]
Use a second order approximation with geodesic circles in the Poincaré disc model.
Morse Theory and Tripods - Hyperbolic Plane Case

Morse indices (same as in planar case)
Case 1:

\[
\begin{cases}
4, & d > 0 \\
3, & d < 0
\end{cases}
\]

Case 2:

\[
\begin{cases}
3, & d > 0 \\
2, & d < 0
\end{cases}
\]