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Abstract

In this work, we develop a robust adaptive well-balanced and
positivity-preserving central-upwind scheme on unstructured trian-
gular grids for shallow water equations. The numerical method 1s
an extension of the scheme from [LIU et al.,J. of Comp. Phys, 374
(2018), pp. 213 - 236]. As a part of the adaptive central-upwind al-
gorithm, we obtain local a posteriori error estimator for the efficient
mesh refinement strategy. The accuracy, high-resolution and effi-
ciency of new adaptive central-upwind scheme are demonstrated
on a number of challenging tests for shallow water models.

2D Shallow Water Equation

We consider the two-dimensional (2-D) Saint-Venant system of
shallow water equations:

hi + (hu)z + (hv)y = 0,

1
(hu); + (hu® + 59/22);,; + (huv)y = —ghDy,

1

(hv); + (huv)g + (hv” + §gh2)y = —ghB,,.

In vector form as a balance law:

U; +F(U, B);: + G(U, B), =

S(U, B).

Notation

Figure 1: Triangular cell with neighbors.

Second-Order High-Resolution Central-
Upwind Schemes
The cell average for 7’
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The pointw1se value of the solution in triangle 7’; 18 approximated
by second-order piecewise linear reconstruction:

Uj(z,y) = Uj + (Ug)(z — z;) + (Uy)(y — yj)
Discontinuities appearing in the reconstruction step at the cell inter-

faces propagate at finite speeds in the direction =£n ;. are estimated
qout

by a]k, ik
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where A_[J;1|, A|J;]| are the smallest and largest eigenvalues of
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Well-Balanced and Positivity-Preserving
Central-Upwind Scheme

Main ideas of the scheme proposed in [2]:

 Replace the variable h by w := h + B in the shallow water equa-
tions.

* The bottom topography B(x, y) is approximated using a contin-
uous piecewise linear interpolation.

 Define three type of computational cells: fully flooded, partially
flooded, and dry.
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e A first-order water surface reconstruction conserves mass and
preserves the positivity and well-balanced properties for “dry
lake” steady states.

e Introduce second-order well-balanced reconstruction to correct
the water depth in partially flooded triangles

Figure 2: Second order reconstruction for partially flooded cell

e The ”draining” time-step method 1s derived in order to have the
positivity of water depth.

Ut =} Z AtBOH + ALS,

e A new quadrature for the source term 1s developed that maintain
the well-balanced property of the scheme.

Adaptive Central-Upwind Scheme

The adaptive central-upwind algorithm 1s described briefly by the
following steps, see [1].

Step 0. At time ¢ = ¢V, generate the initial uniform grid 7.

Step 1. On mesh 7™M-=_ evolve the cell averages U to U™ *!
using the second-order adaptive time evolution.

Step 2. On mesh TMa, compute WLR error and update the
refinement/de-refinement status for each cell/triangle.

Step 3. Generate the new adaptive mesh 77 H1:Muns1 ¢ ¢t

Step 4. Repeat Step 1 - Step 3 until final time.

Adaptive Mesh Refinement/Coarsening

Goal: Design an efficient local mesh refinement procedure.

Figure 3: Refinement in fully
flooded cells

Figure 4: Refinement in par-
tialy flooded cells
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Figure 6: Adaptive mesh 7"

Figure 5: Coarse mesh 7"’

Error estimator:

Using the 1dea of Weak Local Residual (WLR) from [3] and [4], we
have derived local error estimator in [1] that is used as the robust

indicator for the adaptive mesh reﬁnement on triangular mesh. At
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each node V;, we compute the error En * by

+5 1 n+s +3 +3
Bl = F TG,
n-+3 < M,
5 _n1
U; *= Z—rT” (] —wi ),
c=1
R T VI n+1
Fi =Y ad T () (),
c=1
DAL M
1 JMa i r1” 1
= S oS (oY + (o)),
c=1
The error 1n a cell T]n’M" e T-Mn i given by,
¢j = max E“,j K =12,23.13,
K J
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where EZ: * is the WLR error computed at node V;, of T;. The

error e in each cell T]n'M” e TMun ig compared to an error toler-

ance, and the cell 1s either “flagged” for refinement/de-refinement
or “‘no-change”.

Second-order Adaptive Time Evolution

An adaptive stepsize algorithm in [1] 1s applied for the adaptive
mesh to evolve from ¢t to next time level as follows.

e Group all cells Tf’M” e TMu in cell levels | = 0,1,.., L
based on their sizes.

e Calculate the reference time step At and the local time step for
each cell level.
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0,1,...,’P; — 1, we apply the following two adaptive steps of

SSPRK?2 method,
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= : The first SSPRK2 step

O : The second SSPRK2 step

: The time interpolation to obtain solution at t2
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Figure 7: The example of SSPRK2 on mesh with three cell levels, [ = 0, 1, 2.

Numerical Results

Example of the small perturbation steady-state problem in [1]

Bottom Topography:

(1.1, r < 0.

L,

B(z,y) =< 11(02—-7) 01<r<0.2, 7r:= \/(a:* —0.5)2+ (y — 0.5)2.

\

Initial condition:

1+ 0.01
w(x,y,0) = { i ’

max(1, B(z,y)),
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0, otherwise,
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Figure 8: w component of the solution of the IVP computed by the central-
upwind scheme on uniform triangular meshes 2*100*100 (left plot) and

2%200%200 (right plot) at ¢ = 0.1.
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Figure 9: w component of the solution of the IVP computed by the adap-
tive central-upwind scheme on triangular meshes 2*100*100 (left plot) and
the adaptive mesh (right plot) at ¢ = 0.1.

Table 1: The Ropy ratio at ¢t = 0.1,

Iniform mesh ada;j)\t/llvi nllesh .RCPU ada]j)\t/llvi r;esh .RCPU
(cells) (cells) with M =1 (cells) with M =2
2 % 100 x 100 11,831 1.91 6,155 3.04
2 % 200 x 200 31,050 2.08 25,753 3.14
2 % 400 x 400 154,616 3.16 04,357 5.82
R prr average: 2.38 4.00
CPUuniform :

1s the ratio of

where Ropy = CPUqdaptive

the CPU times of the central-upwind algorithm without adaptivity to the CPU
time of the adaptive central-upwind algorithm (uniform mesh and the compared
adaptive mesh have the same size of the smallest cells).

Conclusion and Future Work:

» Adaptive mesh refinement produces higher resolution at smaller

computational cost.

e Goal: test and apply adaptive central-upwind schemes for a va-

riety of shallow water models.
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