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Abstract
In this work, we develop a robust adaptive well-balanced and
positivity-preserving central-upwind scheme on unstructured trian-
gular grids for shallow water equations. The numerical method is
an extension of the scheme from [LIU et al.,J. of Comp. Phys, 374
(2018), pp. 213 - 236]. As a part of the adaptive central-upwind al-
gorithm, we obtain local a posteriori error estimator for the efficient
mesh refinement strategy. The accuracy, high-resolution and effi-
ciency of new adaptive central-upwind scheme are demonstrated
on a number of challenging tests for shallow water models.

2D Shallow Water Equation
We consider the two-dimensional (2-D) Saint-Venant system of
shallow water equations:

ht + (hu)x + (hv)y = 0,

(hu)t + (hu2 +
1

2
gh2)x + (huv)y = −ghBx,

(hv)t + (huv)x + (hv2 +
1

2
gh2)y = −ghBy.

In vector form as a balance law:

Ut + F(U, B)x + G(U, B)y = S(U, B).

Notation

Figure 1: Triangular cell with neighbors.

Second-Order High-Resolution Central-
Upwind Schemes
The cell average for Tj

Ūj(t) ≈
1

|Tj|

∫∫
Tj

U(x, y, t)dxdy

dŪj
dt

= − 1

|Tj|
[Hj1 + Hj2 + Hj3] + S̄j,

where the cell-average of the source term:

S̄j(t) ≈
1

|Tj|

∫∫
Tj

S(U(x, y, t), B(x, y))dxdy

and the numerical fluxes through the corresponding edges of the
triangle Tj are

Hjk =
ljkcos(θjk)

ainjk + aoutjk

[
ainjkF(Ujk(Mjk), Bjk) + aoutjk F(Uj(Mjk), Bjk)

]
+
ljksin(θjk)

ainjk + aoutjk

[
ainjkG(Ujk(Mjk), Bjk) + aoutjk G(Uj(Mjk), Bjk)

]
− ljk

ainjka
out
jk

ainjk + aoutjk

[
Ujk(Mjk)− Uj(Mjk)

]
, k = 1, 2, 3

The pointwise value of the solution in triangle Tj is approximated
by second-order piecewise linear reconstruction:

Ũj(x, y) = Ūj + (Ux)(x− xj) + (Uy)(y − yj)
Discontinuities appearing in the reconstruction step at the cell inter-
faces, propagate at finite speeds in the direction±njk are estimated
by ainjk, aoutjk :

ainjk = −min{λ−[Jjk(Uj(Mjk))], λ−[Jjk(Ujk(Mjk))], 0},
aoutjk = max{λ+[Jjk(Uj(Mjk))], λ+[Jjk(Ujk(Mjk))], 0},

where λ−[Jjk], λ+[Jjk] are the smallest and largest eigenvalues of
the Jacobi matrix Jjk = cos(θjk)∂F

∂U + sin(θjk)∂G
∂U

Well-Balanced and Positivity-Preserving
Central-Upwind Scheme
Main ideas of the scheme proposed in [2]:
• Replace the variable h by w := h+B in the shallow water equa-

tions.
• The bottom topography B(x, y) is approximated using a contin-

uous piecewise linear interpolation.
• Define three type of computational cells: fully flooded, partially

flooded, and dry.

• A first-order water surface reconstruction conserves mass and
preserves the positivity and well-balanced properties for “dry
lake” steady states.

• Introduce second-order well-balanced reconstruction to correct
the water depth in partially flooded triangles

Figure 2: Second order reconstruction for partially flooded cell

• The ”draining” time-step method is derived in order to have the
positivity of water depth.

Ūn+1
j = Ūnj −

1

|Tj|

3∑
k=1

∆tdrainjk Hjk + ∆tS̄j

• A new quadrature for the source term is developed that maintain
the well-balanced property of the scheme.

Adaptive Central-Upwind Scheme
The adaptive central-upwind algorithm is described briefly by the
following steps, see [1].

Step 0. At time t = t0, generate the initial uniform grid T 0,0.
Step 1. On mesh T n,Mn, evolve the cell averages Ūn to Ūn+1

using the second-order adaptive time evolution.
Step 2. On mesh T n,Mn, compute WLR error and update the

refinement/de-refinement status for each cell/triangle.
Step 3. Generate the new adaptive mesh T n+1,Mn+1 at tn+1.
Step 4. Repeat Step 1 - Step 3 until final time.

Adaptive Mesh Refinement/Coarsening
Goal: Design an efficient local mesh refinement procedure.

Figure 3: Refinement in fully
flooded cells

Figure 4: Refinement in par-
tialy flooded cells

Figure 5: Coarse mesh T n,0 Figure 6: Adaptive mesh T n,2

Error estimator:
Using the idea of Weak Local Residual (WLR) from [3] and [4], we
have derived local error estimator in [1] that is used as the robust
indicator for the adaptive mesh refinement on triangular mesh. At

each node Ni, we compute the error E
n+1

2
i by

E
n+1

2
i =

1

∆
(Un+1

2
i + Fn+1

2
i + Gn+1

2
i ),

U
n+1

2
i =

Ci∑
c=1

1

3
|Tn,Mn

jc
|(w̄njc − w̄

n+1
jc

),

Fn+1
2

i =

Ci∑
c=1

a
(i)
c

∆t

2
|Tn,Mn

jc
|((h̄u)njc + (h̄u)n+1

jc
),

Gn+1
2

i =

Ci∑
c=1

b
(i)
c

∆t

2
|Tn,Mn

jc
|((h̄v)njc + (h̄v)n+1

jc
).

The error in a cell Tn,Mn

j ∈ T n.Mn is given by,

ej = max
κ

∣∣∣∣En+1
2

jk

∣∣∣∣ , κ = 12, 23, 13,

where E
n+1

2
jκ is the WLR error computed at node Vjκ of Tj. The

error ej in each cell Tn.Mn
j ∈ T n,Mn is compared to an error toler-

ance, and the cell is either “flagged” for refinement/de-refinement
or “no-change”.

Second-order Adaptive Time Evolution
An adaptive stepsize algorithm in [1] is applied for the adaptive
mesh to evolve from tn to next time level as follows.
• Group all cells Tn,Mn

j ∈ T n,Mn in cell levels l = 0, 1, .., L
based on their sizes.

• Calculate the reference time step ∆t and the local time step for
each cell level.

• On each cell Tn,Mn

j of level l, for each substep [t
n,p
l , t

n,p+1
l ], p =

0, 1, ...,Pl − 1, we apply the following two adaptive steps of
SSPRK2 method,

Ū
(1)
j = Ū

n,p
j −

1

|Tn,Mn

j |

3∑
k=1

∆t
n,p
jk H

n,p
jk + ∆t

n,p
l S̄

n,p
j := R(Ū

n,p
j ,∆t

n,p
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Ū
n,p+1
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1

2
Ū
n,p
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1

2
R(Ū
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Figure 7: The example of SSPRK2 on mesh with three cell levels, l = 0, 1, 2.

Numerical Results
Example of the small perturbation steady-state problem in [1]
Bottom Topography:

B(x, y) =


1.1, r ≤ 0.1,

11(0.2− r) 0.1 < r ≤ 0.2,

0, otherwise,
r :=

√
(x− 0.5)2 + (y − 0.5)2.

Initial condition:

w(x, y, 0) =

{
1 + 0.01, 0.1 < x < 0.2,

max(1, B(x, y)), otherwise,
u ≡ v ≡ 0,

Figure 8: w component of the solution of the IVP computed by the central-
upwind scheme on uniform triangular meshes 2*100*100 (left plot) and
2*200*200 (right plot) at t = 0.1.

Figure 9: w component of the solution of the IVP computed by the adap-
tive central-upwind scheme on triangular meshes 2*100*100 (left plot) and
the adaptive mesh (right plot) at t = 0.1.

uniform mesh
(cells)

adaptive mesh
M = 1
(cells)

RCPU
withM = 1

adaptive mesh
M = 2
(cells)

RCPU
withM = 2

2× 100× 100 11,831 1.91 6,155 3.04
2× 200× 200 31,050 2.08 25,753 3.14
2× 400× 400 154,616 3.16 94,357 5.82

RCPU average: 2.38 4.00

Table 1: The RCPU ratio at t = 0.1, where RCPU =
CPUuniform
CPUadaptive

is the ratio of
the CPU times of the central-upwind algorithm without adaptivity to the CPU
time of the adaptive central-upwind algorithm (uniform mesh and the compared
adaptive mesh have the same size of the smallest cells).

Conclusion and Future Work:
• Adaptive mesh refinement produces higher resolution at smaller

computational cost.
• Goal: test and apply adaptive central-upwind schemes for a va-

riety of shallow water models.
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