Adaptive Central-Upwind Scheme on Triangular Grids for the Saint-Venant System

Yekaterina Epshteyn and Thuong Nguyen

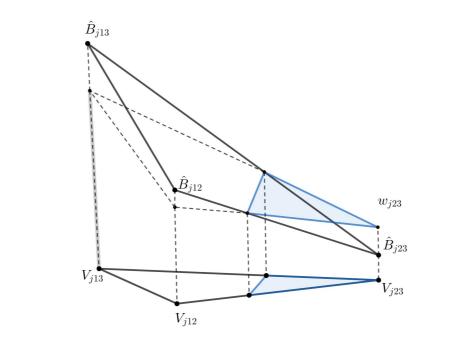
THE UNIVERSITY OF UTAH

Abstract

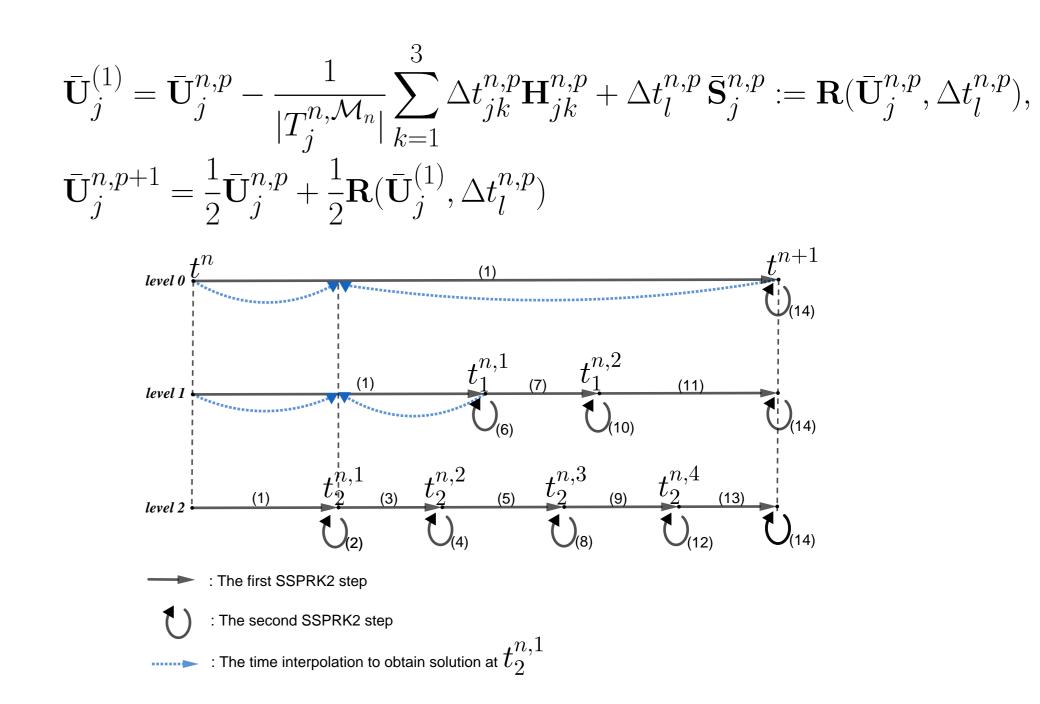
In this work, we develop a robust adaptive well-balanced and positivity-preserving central-upwind scheme on unstructured triangular grids for shallow water equations. The numerical method is an extension of the scheme from [LIU et al., J. of Comp. Phys, 374 (2018), pp. 213 - 236]. As a part of the adaptive central-upwind algorithm, we obtain local a posteriori error estimator for the efficient mesh refinement strategy. The accuracy, high-resolution and efficiency of new adaptive central-upwind scheme are demonstrated on a number of challenging tests for shallow water models.

2D Shallow Water Equation

- A first-order water surface reconstruction conserves mass and preserves the positivity and well-balanced properties for "dry lake" steady states.
- Introduce second-order well-balanced reconstruction to correct the water depth in partially flooded triangles



• On each cell T_j^{n,\mathcal{M}_n} of level l, for each substep $[t_l^{n,p}, t_l^{n,p+1}], p = 0, 1, ..., \mathcal{P}_l - 1$, we apply the following two adaptive steps of SSPRK2 method,



We consider the two-dimensional (2-D) Saint-Venant system of shallow water equations:

$$\begin{split} h_t + (hu)_x + (hv)_y &= 0, \\ (hu)_t + (hu^2 + \frac{1}{2}gh^2)_x + (huv)_y &= -ghB_x, \\ (hv)_t + (huv)_x + (hv^2 + \frac{1}{2}gh^2)_y &= -ghB_y. \end{split}$$

In vector form as a balance law:

 $\mathbf{U}_t + \mathbf{F}(\mathbf{U}, B)_x + \mathbf{G}(\mathbf{U}, B)_y = \mathbf{S}(\mathbf{U}, B).$

Notation

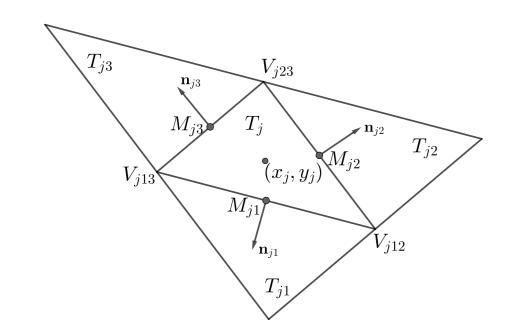


Figure 1: Triangular cell with neighbors.

Second-Order High-Resolution Central-

Figure 2: Second order reconstruction for partially flooded cell

• The "draining" time-step method is derived in order to have the positivity of water depth.

$$\bar{\mathbf{U}}_{j}^{n+1} = \bar{\mathbf{U}}_{j}^{n} - \frac{1}{|T_{j}|} \sum_{k=1}^{3} \Delta t_{jk}^{drain} \mathbf{H}_{jk} + \Delta t \bar{S}_{j}$$

• A new quadrature for the source term is developed that maintain the well-balanced property of the scheme.

Adaptive Central-Upwind Scheme

The adaptive central-upwind algorithm is described briefly by the following steps, see [1]. **Step 0.** At time $t = t^0$, generate the initial uniform grid $\mathcal{T}^{0,0}$. **Step 1.** On mesh $\mathcal{T}^{n,\mathcal{M}_n}$, evolve the cell averages $\overline{\mathbf{U}}^n$ to $\overline{\mathbf{U}}^{n+1}$ using the second-order adaptive time evolution. **Step 2.** On mesh $\mathcal{T}^{n,\mathcal{M}_n}$, compute WLR error and update the refinement/de-refinement status for each cell/triangle.

Step 3. Generate the new adaptive mesh $\mathcal{T}^{n+1,\mathcal{M}_{n+1}}$ at t^{n+1} . Step 4. Repeat Step 1 - Step 3 until final time.

Adaptive Mesh Refinement/Coarsening

Goal: Design an efficient local mesh refinement procedure.

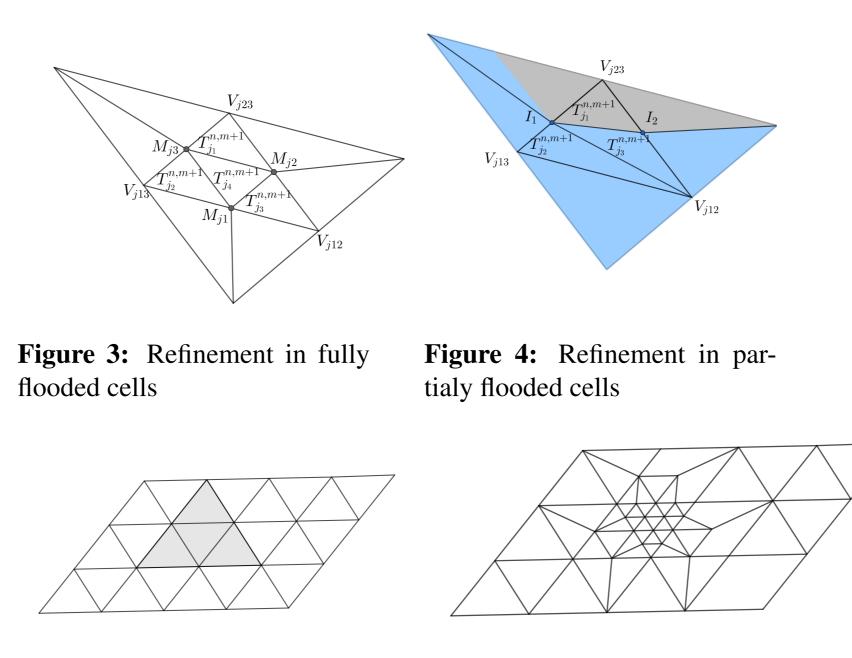


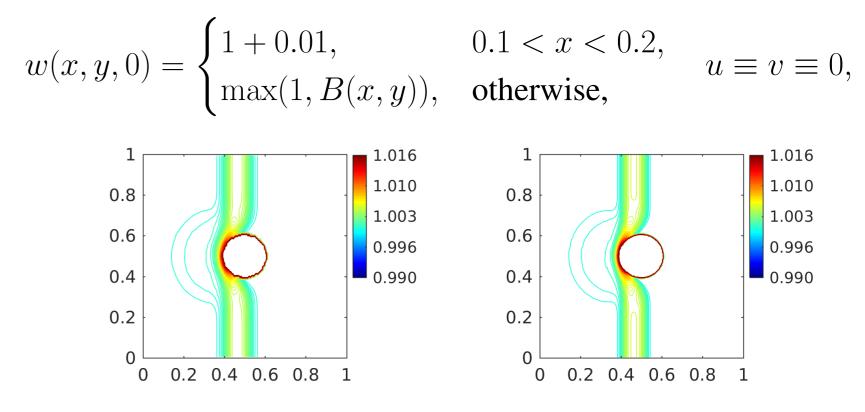
Figure 7: The example of SSPRK2 on mesh with three cell levels, l = 0, 1, 2.

Numerical Results

Example of the small perturbation steady-state problem in [1] Bottom Topography:

$$B(x,y) = \begin{cases} 1.1, & r \le 0.1, \\ 11(0.2 - r) & 0.1 < r \le 0.2, \\ 0, & \text{otherwise,} \end{cases} \quad r := \sqrt{(x - 0.5)^2 + (y - 0.5)^2}$$

Initial condition:



Upwind Schemes

The cell average for T_i

 $\frac{J}{dt} = -\frac{1}{|T_j|} [\mathbf{H}_{j1} + \mathbf{H}_{j2} + \mathbf{H}_{j3}] + S_j,$ where the cell-average of the source term:

$$\bar{\mathbf{S}}_{j}(t) \approx \frac{1}{|T_{j}|} \iint_{T_{j}} S(\mathbf{U}(x, y, t), B(x, y)) dx dy$$

and the numerical fluxes through the corresponding edges of the triangle T_j are

$$\begin{split} \mathbf{H}_{jk} &= \frac{l_{jk}cos(\theta_{jk})}{a_{jk}^{in} + a_{jk}^{out}} \left[a_{jk}^{in} \mathbf{F}(\mathbf{U}_{jk}(M_{jk}), B_{jk}) + a_{jk}^{out} \mathbf{F}(\mathbf{U}_{j}(M_{jk}), B_{jk}) \right] \\ &+ \frac{l_{jk}sin(\theta_{jk})}{a_{jk}^{in} + a_{jk}^{out}} \left[a_{jk}^{in} \mathbf{G}(\mathbf{U}_{jk}(M_{jk}), B_{jk}) + a_{jk}^{out} \mathbf{G}(\mathbf{U}_{j}(M_{jk}), B_{jk}) \right] \\ &- l_{jk} \frac{a_{jk}^{in} a_{jk}^{out}}{a_{jk}^{in} + a_{jk}^{out}} \left[\mathbf{U}_{jk}(M_{jk}) - \mathbf{U}_{j}(M_{jk}) \right], k = 1, 2, 3 \end{split}$$

The pointwise value of the solution in triangle T_i is approximated by second-order piecewise linear reconstruction:

 $\overline{\mathbf{U}}_j(x,y) = \overline{\mathbf{U}}_j + (\mathbf{U}_x)(x-x_j) + (\mathbf{U}_y)(y-y_j)$

Discontinuities appearing in the reconstruction step at the cell interfaces, propagate at finite speeds in the direction $\pm n_{jk}$ are estimated by a_{jk}^{in} , a_{jk}^{out} : $a_{jk}^{in} = -min\{\lambda_{-}[J_{jk}(\mathbf{U}_{j}(M_{jk}))], \lambda_{-}[J_{jk}(\mathbf{U}_{jk}(M_{jk}))], 0\},\$ $\tilde{a_{jk}^{out}} = max\{\lambda_+[J_{jk}(\mathbf{U}_j(M_{jk}))], \lambda_+[J_{jk}(\mathbf{U}_{jk}(M_{jk}))], 0\},\$ where $\lambda_{-}[J_{jk}]$, $\lambda_{+}[J_{jk}]$ are the smallest and largest eigenvalues of the Jacobi matrix $J_{jk} = \cos(\theta_{jk})\frac{\partial \mathbf{F}}{\partial \mathbf{U}} + \sin(\theta_{jk})\frac{\partial \mathbf{G}}{\partial \mathbf{U}}$

Figure 5: Coarse mesh $\mathcal{T}^{n,0}$

Figure 6: Adaptive mesh $\mathcal{T}^{n,2}$

Error estimator:

Using the idea of Weak Local Residual (WLR) from [3] and [4], we have derived local error estimator in [1] that is used as the robust indicator for the adaptive mesh refinement on triangular mesh. At each node N_i , we compute the error $E_i^{n+\frac{1}{2}}$ by

$$E_{i}^{n+\frac{1}{2}} = \frac{1}{\Delta} (\mathcal{U}_{i}^{n+\frac{1}{2}} + \mathcal{F}_{i}^{n+\frac{1}{2}} + \mathcal{G}_{i}^{n+\frac{1}{2}}),$$

$$\mathbf{U}_{i}^{n+\frac{1}{2}} = \sum_{c=1}^{C_{i}} \frac{1}{3} |T_{j_{c}}^{n,\mathcal{M}_{n}}| (\bar{w}_{j_{c}}^{n} - \bar{w}_{j_{c}}^{n+1}),$$

$$\mathcal{F}_{i}^{n+\frac{1}{2}} = \sum_{c=1}^{C_{i}} a_{c}^{(i)} \frac{\Delta t}{2} |T_{j_{c}}^{n,\mathcal{M}_{n}}| ((\bar{h}u)_{j_{c}}^{n} + (\bar{h}u)_{j_{c}}^{n+1}),$$

$$\mathcal{G}_{i}^{n+\frac{1}{2}} = \sum_{c=1}^{C_{i}} b_{c}^{(i)} \frac{\Delta t}{2} |T_{i}^{n,\mathcal{M}_{n}}| ((\bar{h}v)_{j_{c}}^{n} + (\bar{h}v)_{j_{c}}^{n+1}),$$

Figure 8: w component of the solution of the IVP computed by the centralupwind scheme on uniform triangular meshes 2*100*100 (left plot) and 2*200*200 (right plot) at t = 0.1.

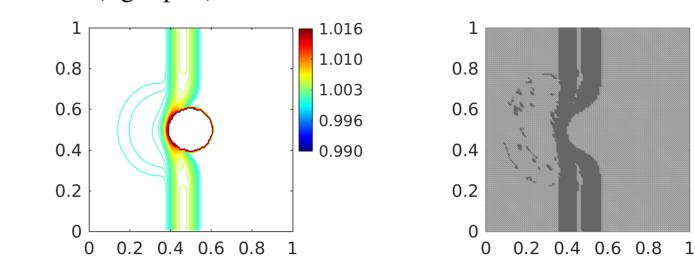


Figure 9: w component of the solution of the IVP computed by the adaptive central-upwind scheme on triangular meshes 2*100*100 (left plot) and the adaptive mesh (right plot) at t = 0.1.

uni	uniform mesh (cells)	adaptive mesh $\mathcal{M} = 1$	\mathcal{R}_{CPU} with $\mathcal{M} = 1$	adaptive mesh $\mathcal{M} = 2$	$\begin{array}{c} \mathcal{R}_{CPU} \\ \text{with } \mathcal{M} = 2 \end{array}$
		(cells)		(cells) $(cells)$	
$2 \times$	100×100	11,831	1.91	6,155	3.04
$2 \times$	200×200	31,050	2.08	25,753	3.14
$2 \times$	400×400	154,616	3.16	94,357	5.82
	\mathcal{R}_{CPU} average:		2.38	1	4.00

Table 1: The R_{CPU} ratio at t = 0.1, where $\mathcal{R}_{CPU} = \frac{CPU_{uniform}}{CPU_{adaptive}}$ is the ratio of the CPU times of the central-upwind algorithm without adaptivity to the CPU time of the adaptive central-upwind algorithm (uniform mesh and the compared adaptive mesh have the same size of the smallest cells).

Conclusion and Future Work:

- Adaptive mesh refinement produces higher resolution at smaller computational cost.
- Goal: test and apply adaptive central-upwind schemes for a va-

Well-Balanced and Positivity-Preserving **Central-Upwind Scheme**

Main ideas of the scheme proposed in [2]:

• Replace the variable h by w := h + B in the shallow water equations.

- The bottom topography B(x, y) is approximated using a continuous piecewise linear interpolation.
- Define three type of computational cells: fully flooded, partially flooded, and dry.

 $\sum_{c} o_c \quad 2 \quad j_c \quad \prod_{c} (i \circ j_c + (i \circ j_c)) j_c$ The error in a cell $T_i^{n,\mathcal{M}_n} \in \mathcal{T}^{n,\mathcal{M}_n}$ is given by, $e_j = \max_{\kappa} \left| E_{jk}^{n+\frac{1}{2}} \right|, \quad \kappa = 12, 23, 13,$

where $E_{j\kappa}^{n+\frac{1}{2}}$ is the WLR error computed at node $V_{j\kappa}$ of T_j . The error e_j in each cell $T_i^{n.\mathcal{M}_n} \in \mathcal{T}^{n,\mathcal{M}_n}$ is compared to an error tolerance, and the cell is either "flagged" for refinement/de-refinement or "no-change".

Second-order Adaptive Time Evolution

An adaptive stepsize algorithm in [1] is applied for the adaptive mesh to evolve from t^n to next time level as follows. • Group all cells $T_j^{n,\mathcal{M}_n} \in \mathcal{T}^{n,\mathcal{M}_n}$ in cell levels l = 0, 1, .., Lbased on their sizes.

• Calculate the reference time step Δt and the local time step for each cell level.

riety of shallow water models.

References

- [1] Yekaterina Epshteyn and Thuong Nguyen, Adaptive Central-Upwind Scheme on Triangular Grids for the Saint-Venant System, Manuscript submitted for publication.
- [2] X. Liu, J. Albright, Y. Epshteyn, and A. Kurganov, Wellbalanced positivity pre-serving central-upwind scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant system, Journal of Computational Physics, 374 (2018), pp. 213-236.
- [3] S. Karni and A. Kurganov, Local error analysis for approximate solutions of hyperbolic conservation laws, Adv. Comput. Math., 22 (2005), pp. 79-99.
- [4] E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations, SIAM J. Numer. Anal., 28 (1991), pp. 891-906.