We are interested in equations of the form:
\[\partial_t u + \partial_x f(u) = 0, \]
where \(u : [0, \infty) \times \mathbb{R} \to V \subset \mathbb{R}^n \) is the state and \(f : V \to \mathbb{R}^n \) is the associated flux.

Entropy Solutions:
We say \(\eta, q : V \to \mathbb{R} \) is an entropy-entropy flux pair for the system \((\eta) \) if
\[\forall q = \nabla \eta f, \]
We say \(u \) is an entropy solution to \((\eta) \) if \(u \in L^\infty(\mathbb{R}_+ \times \mathbb{R}) \) satisfies \((\eta) \) in the sense of distributions and verifies
\[\partial_t \eta(u) + \partial_x q(u) \leq 0, \]
for each entropy-entropy flux pair.

Typical Fluxes:
- **Isentropic Euler:** Let \(\gamma > 1 \).
\[\rho_t + (\rho u)_x = 0 \]
(3)
\[\rho u_t + (\rho u^2 + p)_x = 0 \]
(4)
- **Full Euler:** Let \(E = \frac{1}{2} u^2 + e \) and fix a pressure law \(P(\rho, e) \).
\[\rho_t + (\rho u)_x = 0 \]
(5)
\[\rho u_t + (\rho u^2 + P(\rho, e))_x = 0 \]
(6)
\[(\rho E)_t + (\rho uE + uP(\rho, e))_x = 0 \]
(7)

Classical Results:
- **Existence of global-in-time entropy solutions** is known in several scenarios using the vanishing viscosity method, compensated compactness, or convergence of numerical schemes [Glimm, 1965].
- **For scalar, \(V \subset \mathbb{R} \), in [Kruzkov, 1970] and \(u, v \) entropy solutions with initial data \(u_0, v_0 \).
\[\|u(t) - v(t)\|_1 \leq \|u_0 - v_0\|_1. \]
(8)
- **For \(V \subset \mathbb{R}^n \), in [Diperna,1979] and [Dafermos, 1979], stability of Lipschitz solutions among all entropy solutions \(0. \)
- **Separately, \(V \subset \mathbb{R}^n \), if \(u_0 \) small BV, in [Bressan and Lewicka, 2000] there is at most one solution \(u \) which has bounded variation along space-like curves and initial data \(u_0 \).**

The Relative Entropy Method:
For \(\eta \) a strictly convex entropy of \((\eta) \) with entropy flux \(q \), the associated relative entropy and entropy flux functionals are
\[\eta(u|v) = \eta(u) - \eta(v) - \int_v^u \eta' \ dX, \]
\[\eta(u|v) = \eta(u) - \eta(v) - \int_v^u \eta' \ dX, \]
(9)
(10)
- **If \(u \) is an entropy solution to \((\eta) \), \(u \) satisfies**
\[\partial_t \eta(u|v) + \partial_x q(u|v) \leq 0 \text{ for } \forall v \in V. \]
(11)
- **Taylor expansion using strict convexity of \(\eta \) gives \(\eta(u|v) \approx |u - v|^2 \).**
- **Introduced by Dafermos and DiPerna to show stability of Lipschitz solutions among entropy solutions by taking \(u \) a weak solution and \(v \) a Lipschitz solution.**

The method is \(L^1 \)-based, which is bad for stability of discontinuous solutions. Consider the inviscid \(n \)d Burger’s equation,
\[\partial_t u + \partial_x \left(\frac{u^2}{2} \right) = 0. \]
(12)

Figure: We track the \(L^2 \) norm difference of a shock and a perturbation without a shift. We use the Lax-Friedrichs scheme with \(\Delta t = 0.001, \Delta x = 0.002 \).

The \(\alpha \)-Contraction Method:
- **The \(\alpha \)-contraction property for \(u(t, x) \) an entropic solution and \((u_1, u_2, \sigma_\alpha) \) an entropic \(\alpha \)-shock holds if there are weights \(a_1, a_2 \in \mathbb{R} \) and a Lipschitz shift \(t \to h(t) \) such that**
\[E(t) = \int_{(0,1)} a_\alpha(u_1) \ dx + \int_{(0,1)} a_\alpha(u_2) \ dx \leq E(0). \]
(13)
- **The \(\alpha \)-contraction property holds with weights \(a_1 = a_2 = 1 \) for many scalar problems, but the weights are necessary for the majority of systems [Leger, 2011]. [Serre and Vasseur, 2014].**
- **But with weights \(\alpha \)-contraction property holds for a large family of \(n \times n \) systems with small \(a_1, a_2 \) [Kang and Vasseur, 2015].**
- **Main question:** For \(S(t, x) \) the solution corresponding to \((u_1, u_2, \sigma_{\alpha_2}) \), how far is \(E(t) \) from \(\|u(t, \cdot + h(t)) - S(t, \cdot)\|_2 \)?

Definition: Strong Trace:
We say a function \(u \in L^\infty(\mathbb{R}_+ \times \mathbb{R}) \) satisfies the strong trace property if for each \(t \to X(t) \) a Lipschitz curve, there are \(u^k \in L^\infty(\mathbb{R}_+ \times \mathbb{R}) \) such that for any \(T \to 0 \),
\[\lim_{T \to 0} \int_0^T \text{ess sup} \ |u(t, X(t) + y) - u^k(t, dt) = 0. \]
(14)

Suppose \(\eta \) corresponds to a class of fluxes containing the isentropic and full Euler (with ideal gas law equation of state) systems and \(u \) is an entropy solution satisfying the strong trace property.

Theorem 1: G, Vasseur [2020]
Then, for any \(d \in Y \) there are \(C, \alpha, \Delta > 0 \) such that for any \((u_1, u_2, \sigma_{\alpha_2}) \) a \(\alpha \)-shock with \(u_1, u_2 \in B_{(d)} \), there are \(a_1, a_2 > 0 \) and \(t \to h(t) \) Lipschitz such that for almost every \(t \),
\[E(t) = \int_{(0,1)} a_\alpha(u_1) \ dx + \int_{(0,1)} a_\alpha(u_2) \ dx \leq E(0) \]
(15)
\[1 + C' |u_1 - u_2| \leq a_\alpha \leq 1 + 2C' |u_1 - u_2| \]
(16)
\[-\alpha_1 \leq h(t) \leq \alpha_2 \leq \text{inf } \lambda_2(u) \]
(17)

Suppose \(\alpha \) belongs to a large class of fluxes with \(V \subset \mathbb{R}^2 \), which includes the flux from isentropic Euler.

Theorem 1.2: Chen, Krupa, Vasseur [2020]
There is an \(\varepsilon > 0 \) such that for \(\|u_1|_{BV} < \varepsilon \), if \(u(t, x) \) and \(v(t, x) \) are entropy solutions to \((\eta) \) with initial data \(u_0, v_0 \), \(\|u_0 - v_0\|_{BV} < \varepsilon \), and \(v \) satisfying the strong trace property, then \(u = v \).

Implications of Theorem 1.2
Theorem 1.2 implies that the Tame Oscillation condition and the Bounded Variations along Space-Like Curves condition of Bressan et al. are not needed for the stability of small \(BV \) entropy solutions, at least in the \(2 \times 2 \) case.

William Golding
University of Texas at Austin
May 19, 2021