Hamiltonian Methods and Asymptotic Dynamics

Institute for Computational and Experimental Research in Mathematics (ICERM)

December 6, 2021 - December 10, 2021
Monday, December 6, 2021
  • 8:55 - 9:00 am EST
    Welcome
    11th Floor Lecture Hall
    • Brendan Hassett, ICERM/Brown University
  • 9:00 - 9:45 am EST
    Asymptotic stability of the Sine-Gordon kink under odd perturbations via super-symmetry
    11th Floor Lecture Hall
    • Wilhelm Schlag, Yale University
    Abstract
    We will describe the recent asymptotic analysis with Jonas Luehrmann of the Sine-Gordon evolution of odd data near the kink. We do not rely on the complete integrability of the problem in a direct way, in particular we do not use the inverse scattering transform.
  • 10:00 - 10:30 am EST
    Coffee Break
    11th Floor Collaborative Space
  • 10:30 - 11:15 am EST
    Time-dependent Bogoliubov-de-Gennes and Ginzburg-Landau equations
    11th Floor Lecture Hall
    • Virtual Speaker
    • Rupert Frank, LMU Munich
    Abstract
    We study the time-dependent Bogoliubov--de-Gennes equations for generic translation-invariant fermionic many-body systems. For initial states that are close to thermal equilibrium states at temperatures near the critical temperature, we show that the magnitude of the order parameter stays approximately constant in time and, in particular, does not follow a time-dependent Ginzburg--Landau equation, which is often employed as a phenomenological description and predicts a decay of the order parameter in time.
  • 11:30 am - 12:15 pm EST
    On the well-posedness of the derivative nonlinear Schr\"odinger equation
    11th Floor Lecture Hall
    • Maria Ntekoume, Rice University
    Abstract
    We consider the derivative nonlinear Schr\"odinger equation in one space dimension, posed both on the line and on the circle. This model is known to be completely integrable and $L^2$-critical with respect to scaling. However, not much is known regarding the well-posendess of the equation below $H^{\frac 12}$. In this talk, we prove that this problem is globally well-posed for initial data in the Sobolev spaces $H^s$ for $\frac 1 6\leq s<\frac 12$. The key ingredient in our argument is proving that ensembles of orbits with $L^2$-equicontinuous initial data remain equicontinuous under evolution. This is joint work with Rowan Killip and Monica Visan.
  • 12:30 - 2:30 pm EST
    Lunch/Free Time
  • 2:30 - 3:15 pm EST
    Quantitative derivation and scattering of the 3D cubic NLS in the energy space
    11th Floor Lecture Hall
    • Justin Holmer, Brown University
    Abstract
    We consider the derivation of the {defocusing cubic nonlinear Schr\"{o}dinger equation (NLS) on $\mathbb{R}^{3}$ from quantum $N$-body dynamics. We reformat the hierarchy approach with Klainerman-Machedon theory and prove a bi-scattering theorem for the NLS to obtain convergence rate estimates under $H^{1}$ regularity. The $H^{1}$ convergence rate estimate we obtain is almost optimal for $H^{1}$ datum, and immediately improves if we have any extra regularity on the limiting initial one-particle state. This is joint work with Xuwen Chen (University of Rochester).
  • 3:30 - 4:15 pm EST
    TBD
    11th Floor Lecture Hall
    • Hong Wang, Institute for Advanced Study (IAS)
  • 4:30 - 6:00 pm EST
    Welcome Reception
    Reception - 11th Floor Collaborative Space
Tuesday, December 7, 2021
  • 9:00 - 9:45 am EST
    High-Order Rogue Waves and Solitons, and Solutions Interpolating Between Them
    11th Floor Lecture Hall
    • Virtual Speaker
    • Peter Miller, University of Michigan
    Abstract
    A family of exact solutions to the focusing nonlinear Schrödinger equation is presented that contains fundamental rogue waves and multiple-pole solitons of all orders. The family is indexed with a continuous parameter representing the "order" that allows one to continuously tune between rogue waves and solitons of different integer orders. In this scheme, solitons and rogue waves of increasing integer orders alternate as the continuous order parameter increases. For example, the Peregrine solution can be viewed as a soliton of order three-halves. We show that solutions in this family exhibit certain universal features in the limit of high (continuous) order. This is joint work with Deniz Bilman (Cincinnati).
  • 10:00 - 10:30 am EST
    Coffee Break
    11th Floor Collaborative Space
  • 10:30 - 11:15 am EST
    TBD
    11th Floor Lecture Hall
    • Igor Rodnianski, Princeton University
  • 11:30 am - 12:15 pm EST
    Ground state in the energy super-critical Gross-Pitaevskii equation with a harmonic potential
    11th Floor Lecture Hall
    • Virtual Speaker
    • Dmitry Pelinovsky, McMaster University
    Abstract
    In order to prove the existence of a ground state (a positive, radially symmetric solution in the energy space), we develop the shooting method and deal with a one-parameter family of classical solutions to an initial-value problem for the stationary equation. We prove that the solution curve (the graph of the eigenvalue parameter versus the supremum norm) is oscillatory below a threshold and monotone above a threshold. Compared to the existing literature, rigorous asymptotics are derived by constructing families of solutions to the stationary equation with functional-analytic rather than geometric methods. The same analytical technique allows us to characterize the Morse index of the ground state.
  • 12:30 - 2:00 pm EST
    Lunch/Free Time
  • 2:00 - 2:45 pm EST
    Rigidity for solutions to the quintic NLS equation at the ground state level
    11th Floor Lecture Hall
    • Benjamin Dodson, John Hopkins University
    Abstract
    In this talk, we will prove rigidity for solutions to the quintic nonlinear Schrodinger equation in one dimension, at the level of the ground state. Specifically, we show that the only solutions that fail to scatter are the solitons and the pseudoconformal transformation of the solitons.
  • 3:00 - 4:30 pm EST
    Lightning Talks followed by Coffee Break and discussions
    Lightning Talks - 11th Floor Lecture Hall
Wednesday, December 8, 2021
  • 9:00 - 9:45 am EST
    TBD
    11th Floor Lecture Hall
    • Virtual Speaker
    • Nataša Pavlovic, University of Texas at Austin
  • 10:00 - 10:30 am EST
    Coffee Break
    11th Floor Collaborative Space
  • 10:30 - 11:15 am EST
    TBD
    11th Floor Lecture Hall
    • Tadahiro Oh, The University of Edinburgh
  • 11:30 am - 12:15 pm EST
    Mathematical Construction for Gravitational Collapse
    11th Floor Lecture Hall
    • Yan Guo, Brown University
    Abstract
    We will discuss recent constructions of blowup solutions for describing gravitational collapse for Euler-Poisson system.
  • 12:30 - 12:40 pm EST
    Group Photo
    11th Floor Lecture Hall
  • 12:40 - 2:30 pm EST
    Lunch/Free Time
  • 2:30 - 3:15 pm EST
    Internal Modes and Radiation Damping for 3d Klein-Gordon equations
    11th Floor Lecture Hall
    • Virtual Speaker
    • Fabio Pusateri, University of Toronto
    Abstract
    We consider quadratic Klein-Gordon equations with an external potential $V$ in $3+1$ space-time dimensions. We assume that $V$ is generic and decaying, and that the operator $-\Delta + V + m^2$ has an eigenvalue $\lambda^2 < m^2$. This is a so-called ‘internal mode’ and gives rise to time-periodic localized solutions of the linear flow. We address the question of whether such solutions persist under the full nonlinear flow. Our main result shows that small nonlinear solutions slowly decay as the energy is transferred from the internal mode to the continuous spectrum, provided a natural Fermi golden rule holds. Moreover, we obtain very precise asymptotic information including sharp rates of decay and the growth of weighted norms. These results extend the seminal work of Soffer-Weinstein for cubic nonlinearities to the case of any generic perturbation. This is joint work with Tristan Léger (Princeton University).
  • 3:30 - 4:00 pm EST
    Coffee Break
    11th Floor Collaborative Space
  • 4:00 - 4:45 pm EST
    Solutions to the KdV and Related Equations With Almost Periodic Initial Data
    11th Floor Lecture Hall
    • David Damanik, RICE University
    Abstract
    We discuss recent work concerning the existence, uniqueness, and structure of solutions to the KdV equation, as well as related ones, with almost periodic initial data. The talk is based on several joint works with a variety of co-authors, including Ilia Binder, Michael Goldstein, Yong Li, Milivoje Lukic, Alexander Volberg, Fei Xu, and Peter Yuditskii.
Thursday, December 9, 2021
  • 9:00 - 9:45 am EST
    The Quartic Integrability and Long Time Existence of Steep Water Waves in 2D
    11th Floor Lecture Hall
    • Virtual Speaker
    • Sijue Wu, University of Michigan
    Abstract
    Abstract. It is known since the work of Dyachenko & Zakharov in 1994 that for the weakly nonlinear 2d infinite depth water waves, there are no 3-wave interactions and all of the 4-wave interaction coefficients vanish on the non trivial resonant manifold. In this talk, I will present a recent result that proves this partial integrability from a different angle. We construct a sequence of energy functionals Ej (t), directly in the physical space, which are explicit in the Riemann mapping variable and involve material derivatives of order j of the solutions for the 2d water wave equation, so that ddtEj (t) is quintic or higher order. We show that if some scaling invariant norm, and a norm involving one spacial derivative above the scaling of the initial data are of size no more than ε, then the lifespan of the solution for the 2d water wave equation is at least of order O(ε−3), and the solution remains as regular as the initial data during this time. If only the scaling invariant norm of the data is of size ε, then the lifespan of the solution is at least of order O(ε−5/2). Our long time existence results do not impose size restrictions on the slope of the initial interface and the magnitude of the initial velocity, they allow the interface to have arbitrary large steepnesses and initial velocities to have arbitrary large magnitudes.
  • 10:00 - 10:30 am EST
    Coffee Break
    11th Floor Collaborative Space
  • 10:30 - 11:15 am EST
    Global wellposedness of the Zakharov System below the ground state
    11th Floor Lecture Hall
    • Virtual Speaker
    • Sebastian Herr, Bielefeld University
    Abstract
    We consider the Cauchy problem for the Zakharov system with a focus on the energy-critical dimension d = 4 and prove that global well-posedness holds in the full (non-radial) energy space for any initial data with energy and wave mass below the ground state threshold. The result is based on a uniform Strichartz estimate for the Schr ̈odinger equation with potentials solving the wave equation. This is joint work with Timothy Candy and Kenji Nakanishi.
  • 11:30 am - 12:15 pm EST
    TBD
    11th Floor Lecture Hall
    • Svetlana Roudenko, Florida International University
  • 12:30 - 2:30 pm EST
    Lunch/Free Time
  • 2:30 - 3:15 pm EST
    TBD
    11th Floor Lecture Hall
    • Daniel Tataru, University of California, Berkeley
  • 3:30 - 4:00 pm EST
    Coffee Break
    11th Floor Collaborative Space
  • 4:00 - 4:45 pm EST
    Simple motion of stretch-limited elastic strings
    11th Floor Lecture Hall
    • Virtual Speaker
    • Casey Rodriguez, University of North Carolina
    Abstract
    Perfectly flexible strings are among the simplest one-dimensional continuum bodies and have a rich mechanical and mathematical theory dating back to the derivation of their equations of motion by Euler and Lagrange. In classical treatments, the string is either completely extensible (force produces stretching) or completely inextensible (every segment has a fixed length, regardless of the motion). However, common experience is that a string can be stretched (is extensible), and after a certain amount of force is applied the stretch of the string is maximized (becoming inextensible). In this talk, we discuss a simple model for these stretch-limited elastic strings, in what way they model ``elastic" behavior, the well-posedness and asymptotic stability of certain simple motions, and (many) open questions.
Friday, December 10, 2021
  • 9:00 - 9:45 am EST
    TBD
    11th Floor Lecture Hall
    • Pierre Germain, NYU - Courant Institute
  • 10:00 - 10:30 am EST
    Coffee Break
    11th Floor Collaborative Space
  • 10:30 - 11:15 am EST
    Non-trivial self-similar blowup in energy supercritical wave equations
    11th Floor Lecture Hall
    • Birgit Schoerkhuber, University of Innsbruck, Austria
    Abstract
    Self-similar solutions play an important role in the dynamics of nonlinear wave equations as they provide explicit examples for finite-time blowup. This talk will be concerned with the focusing cubic and the quadratic wave equation, respectively, in dimensions where the models are energy supercritical. For both equations, we present new self-similar solutions with non-trivial profiles, which are completely explicit in all supercritical dimensions. Furthermore, we analyse their stability locally in backward light cones without symmetry assumptions. This involves a delicate spectral problem that we are able to solve rigorously only in particular space dimensions. In these cases, we prove that the solutions are co-dimension one stable modulo translations in a backward light cone of the blowup point. This is joint work with Irfan Glogić (Vienna) and Elek Csobo (Innsbruck).
  • 11:30 am - 12:15 pm EST
    The stability of charged black holes
    11th Floor Lecture Hall
    • Virtual Speaker
    • Elena Giorgi, Columbia University
    Abstract
    Black hole solutions in General Relativity are parametrized by their mass, spin and charge. In this talk, I will motivate why the charge of black holes adds interesting dynamics to solutions of the Einstein equation thanks to the interaction between gravitational and electromagnetic radiation. Such radiations are solutions of a system of coupled wave equations with a symmetric structure which allows to define a combined energy-momentum tensor for the system. Finally, I will show how this physical-space approach is resolutive in the most general case of Kerr-Newman black hole, where the interaction between the radiations prevents the separability in modes.
  • 12:30 - 2:00 pm EST
    Lunch/Free Time
  • 2:00 - 2:45 pm EST
    Invariance of the Gibbs measures for the periodic generalized KdV equations
    11th Floor Lecture Hall
    • Virtual Speaker
    • Andreia Chapouto, UCLA
    Abstract
    In this talk, we consider the periodic generalized Korteweg-de Vries equations (gKdV). In particular, we study gKdV with the Gibbs measure initial data. The main difficulty lies in constructing local-in-time dynamics in the support of the measure. Since gKdV is analytically ill-posed in the L2-based Sobolev support, we instead prove deterministic local well-posedness in some Fourier-Lebesgue spaces containing the support of the Gibbs measure. New key ingredients are bilinear and trilinear Strichartz estimates adapted to the Fourier-Lebesgue setting. Once we construct local-in-time dynamics, we apply Bourgain's invariant measure argument to prove almost sure global well-posedness of the defocusing gKdV and invariance of the Gibbs measure. Our result completes the program initiated by Bourgain (1994) on the invariance of the Gibbs measures for periodic gKdV equations. This talk is based on joint work with Nobu Kishimoto (RIMS, University of Kyoto).
  • 3:00 - 3:45 pm EST
    TBD
    11th Floor Lecture Hall
    • Sameer Iyer, UC Davis
  • 4:00 - 4:30 pm EST
    Coffee Break
    11th Floor Collaborative Space

All event times are listed in ICERM local time in Providence, RI (Eastern Standard Time / UTC-5).

All event times are listed in .