The goal of this semester program is to bring together a variety of mathematicians with researchers working in theoretical and computational neuroscience as well as some theory-friendly experimentalists. However, unlike programs in neuroscience that emphasize connections between theory and experiment, this program will focus on building bridges between theory and mathematics. This is motivated in part by the observation that theoretical developments in neuroscience are often limited not only by lack of data but also by the need to better develop the relevant mathematics. For example, theorists often rely on linear or near-linear modeling frameworks for neural networks simply because the mathematics of nonlinear network dynamics is still poorly understood. Conversely, just as in the history of physics, neuroscience problems give rise to new questions in mathematics. In recent years, these questions have touched on a rich variety of fields including geometry, topology, combinatorics,... (more)