Organizing Committee
- John Etnyre
Georgia Institute of Technology - Matthew Hedden
Michigan State University - Keiko Kawamuro
University of Iowa - Joan Licata
Australian National University - Vera Vertesi
University of Vienna
Abstract
Braids are deeply entwined with low-dimensional topology. Closed braids are knots and links, while viewing braid groups as surface mapping class groups connects the topic to fundamental constructions of three- and four-manifolds. The question of how properties of braids or mapping classes reflect the associated manifolds arises in Dehn surgery, link invariants, and contact and symplectic geometry. The workshop will highlight recent advances in these and other areas of low-dimensional topology where braids and mapping classes play a significant role. The workshop will also explore related algorithms, with an eye towards their (efficient) implementation.
Please note that this program is nearing capacity for in-person participation. Consider applying for this program virtually.

Confirmed Speakers & Participants
Talks will be presented virtually or in-person as indicated in the schedule below.
- Speaker
- Poster Presenter
- Attendee
- Virtual Attendee
-
Leonard Afeke
University of Toronto
-
Antonio Alfieri
Université du Québec à Montréal (CRM)
-
akram alishahi
University of Georgia
-
Byung Hee An
Kyungpook National University
-
Hanine Awada
laboratory of mathematics Jean Leray
-
Kenneth Baker
University of Miami
-
Rhea Palak Bakshi
Institute for Theoretical Studies, ETH Zurich
-
John Baldwin
Boston College
-
Asilata Bapat
The Australian National University
-
Giacomo Bascape
UQAM
-
Inanc Baykur
University of Massachusetts Amherst
-
Anna Beliakova
Universität Zürich
-
Paolo Bellingeri
University of Caen Normandy
-
Fraser Binns
Boston College
-
Sarah Blackwell
University of Georgia
-
Benjamin Bode
Consejo Superior de Investigaciones Científicas
-
Hans Boden
McMaster University
-
Rachael Boyd
University of Cambridge
-
Vinicius Canto Costa
Stony Brook University
-
Orsola Capovilla-Searle
University of California, Davis
-
Fabio Capovilla-Searle
Purdue University
-
Michele Capovilla-Searle
University of Iowa
-
Yoonseok Chae
UC Davis
-
Ruth Charney
Brandeis University
-
Rima Chatterjee
University of Cologne
-
Lei Chen
University of Maryland, College Park
-
Wenzhao Chen
The university of British Columbia
-
Dorin Cheptea
Institute of Mathematics of the Romanian Academy, Romania
-
Sally Collins
Georgia Institute of Technology
-
Anthony Conway
MIT
-
Marc Culler
University of Illinois at Chicago
-
María Cumplido Cabello
University of Seville
-
Xinle Dai
Harvard University
-
Irving Dai
Stanford University
-
Celeste Damiani
Queen Mary University of London
-
Anand Deopurkar
Australian National University
-
Soumya Dey
Chennai Mathematical Institute
-
Brandy Doleshal
Sam Houston State University
-
Ivan Dynnikov
Steklov Mathematical Institute
-
Julia E Grigsby
Boston College
-
John Etnyre
Georgia Institute of Technology
-
Peter Feller
ETH Zurich
-
Viktória Földvári
Alfréd Rényi Institute of Mathematics
-
Terry Fuller
California State University, Northridge
-
Antony (Tsz Hin) Fung
Boston College
-
Honghao Gao
Michigan State University
-
Jacob Garcia
University of California, Riverside
-
Sudipta Ghosh
Louisiana State University
-
Marco Golla
Laboratoire des mathématiques Jean Leray
-
Juan González-Meneses
Universidad de Sevilla
-
Eugene Gorsky
UC Davis
-
Joshua Greene
Boston College
-
Iva Halacheva
Northeastern University
-
Shelly Harvey
Rice University
-
Kyle Hayden
Columbia University
-
Matthew Hedden
Michigan State University
-
Edmund Heng
The Australian National University
-
Diana Hubbard
Brooklyn College
-
James Hughes
University of California, Davis
-
Mark Hughes
Brigham Young University
-
Dionne Ibarra
George Washington University
-
Mee Seong Im
United States Naval Academy
-
Tetsuya Ito
Kyoto University
-
Michał Jabłonowski
Uniwersytet Gdański
-
Peter Johnson
University of Virginia
-
Jonathan Johnson
Oklahoma State University
-
Şeyma Karadereli
Boğaziçi University
-
Keiko Kawamuro
University of Iowa
-
Marc Kegel
Humboldt-Universität zu Berlin
-
Willi Kepplinger
University of Vienna
-
Sudipta Kolay
ICERM
-
Kenji Kozai
Southern Connecticut State University
-
Siddhi Krishna
Columbia University
-
Miriam Kuzbary
Georgia Institute of Technology
-
Caitlin Leverson
Bard College
-
Tudur Lewis
University of Glasgow
-
Anthony Licata
Australian National University
-
Joan Licata
Australian National University
-
(Jessica) Chengjin Liu
University of Toronto
-
Alex Manchester
Rice University
-
Marco Marengon
Alfréd Rényi Institute of Mathematics
-
Thomas Mark
University of Virginia
-
Maciej Markiewicz
Uniwersity of Warsaw
-
Gage Martin
Boston College
-
Gordana Matic
University of Georgia
-
Maggie Miller
Stanford University
-
Hyunki Min
mit
-
Sayantika Mondal
Graduate school and university center, CUNY
-
Allison Moore
Virginia Commonwealth University
-
Francesco Morabito
École Polytechnique
-
Neha Nanda
Indian Institute of Science Education and Research Bhopal
-
Seyed Ali Naseri Sadr
Boston College
-
Patrick Naylor
Princeton University
-
Shaheen Nazir
Lahore University of Management Sciences
-
Joanna Nelson
Rice University
-
Lenny Ng
Duke University
-
Kie Seng Nge
Australia National University
-
Sinem Onaran
Hacettepe University
-
Burak Ozbagci
Koc University
-
Martin Palmer-Anghel
Mathematical Institute of the Romanian Academy, Bucharest
-
Yu Pan
Tianjin University
-
Tushar Pandey
Texas A&M University
-
Ina Petkova
Dartmouth College
-
Lisa Piccirillo
University of Texas
-
Juanita Pinzon-Caicedo
University of Notre Dame
-
Olga Plamenevskaya
Stony Brook University
-
Sarah Pritchard
Georgia Institute of Technology
-
Jozef Przytycki
George Washington University
-
HITESH RAUNDAL
Indian Institute of Science Education and Research, Mohali, India
-
Braeden Reinoso
Boston College
-
Lee Rudolph
Clark University
-
Nur Saglam
University of California - Riverside
-
Sumeyra Sakalli
University of Arkansas
-
Nancy Scherich
University of Toronto
-
Anastassiya Semenova
ICERM, Brown University
-
Tanushree Shah
Glasgow University
-
Linhui Shen
Michigan State University
-
Marithania Silvero
Universidad de Sevilla
-
Rahul Singh
Virginia Polytechnic Institute and State University
-
Steven Sivek
Imperial College London
-
Patricia Sorya
Université du Québec à Montréal
-
Laura Starkston
UC Davis
-
Eric Stenhede
University of Vienna
-
Haoyu Sun
University of Texas, Austin
-
Isaac Sundberg
Bryn Mawr College
-
Joshua Sussan
CUNY
-
Shuai Tan
Australian National University
-
Bulent Tosun
University of Alabama
-
Lev Tovstopyat-Nelip
Michigan State University
-
Lisa Traynor
Bryn Mawr College
-
Samuel Tripp
Dartmouth College
-
Paula Truöl
ETH Zurich
-
Linh Truong
University of Michigan
-
Anastasiia Tsvietkova
Rutgers-Newark/IAS
-
Hannah Turner
Georgia Institute of Technology
-
Jeremy Van Horn-Morris
University of Arkansas
-
Yvon Verberne
Georgia Institute of Technology
-
Vera Vertesi
University of Vienna
-
Laura Wakelin
Imperial College London
-
Shunyu Wan
University of virginia
-
Andy Wand
University of Glasgow
-
Yi Wang
University of Pennsylvania
-
Morgan Weiler
Cornell University
-
Daping Weng
University of California, Davis
-
Biji Wong
Max Planck Institute for Mathematics
-
C.-M. Michael Wong
Dartmouth College
-
Angela Wu
Louisiana State University
-
Jiajun Yan
University of Virginia
-
Jiaqi Yang
ICERM
-
Fan Ye
Peking University
-
Kevin Yeh
Boston College
-
Max Zahoransky von Worlik
Technische Universität Berlin
-
Melissa Zhang
University of Georgia
-
Kejia Zhu
University of Illinois at Chicago
Workshop Schedule
Monday, April 25, 2022
-
8:30 - 8:50 am EDTCheck In11th Floor Collaborative Space
-
8:50 - 9:00 am EDTWelcome11th Floor Lecture Hall
- Brendan Hassett, ICERM/Brown University
-
9:00 - 9:45 am EDTNew algebraic structures for Legendrian links11th Floor Lecture Hall
- Speaker
- Lenny Ng, Duke University
- Session Chair
- Matthew Hedden, Michigan State University
Abstract
I'll discuss a number of (arguably) new holomorphic-curve invariants of Legendrian knots and links. These come from an L-infinity structure on commutative Legendrian contact homology, derived from rational symplectic field theory. The new invariants include a symplectic structure on the augmentation variety of a Legendrian link, as well as a Poisson bracket (on a polynomial ring) associated to any positive braid. Parts of this are joint work in progress with Roger Casals, Honghao Gao, Linhui Shen, and Daping Weng.
-
10:00 - 10:30 am EDTCoffee Break11th Floor Collaborative Space
-
10:30 - 11:15 am EDTFractional Dehn twists and left-orders on mapping class groups11th Floor Lecture Hall
- Speaker
- Hannah Turner, Georgia Institute of Technology
- Session Chair
- Matthew Hedden, Michigan State University
Abstract
Three-manifolds (and closed braids inside them) admit descriptions called open book decompositions; in this setting a surface with boundary and a mapping class describe the 3-manifold (and braid). One invariant of an open book is the fractional Dehn twist coefficient (FDTC). The FDTC is a real number invariant of a mapping class of a surface with boundary, which has connections to contact topology and foliation theory. I'll show that the FDTC of a given mapping class can be computed using a multitude of geometrically defined left-orders on the mapping class group. This is joint work with Diana Hubbard.
-
11:30 am - 12:15 pm EDTComputational bounds on the band rank11th Floor Lecture Hall
- Speaker
- Mark Hughes, Brigham Young University
- Session Chair
- Matthew Hedden, Michigan State University
Abstract
The band rank of a braid is the length of its shortest decomposition into a product of conjugates of Artin generators. Using braided surfaces the band rank of a braid can be used to express the ribbon genus of its closure, and thus it is very difficult to compute in general. In this talk I will outline computational approaches to producing upper and lower bounds on the band rank of a braid. This is joint work with Justin Meiners.
-
12:30 - 2:30 pm EDTLunch/Free Time
-
2:30 - 3:15 pm EDTBraided Embeddings11th Floor Lecture Hall
- Speaker
- Sudipta Kolay, ICERM
- Session Chair
- Siddhi Krishna, Columbia University
Abstract
Braided embeddings are a natural generalization of closed braids in three dimensions, which gives a way to construct many higher dimensional embeddings. We will discuss the lifting and isotopy problem for braided embeddings. Time permitting, we will also mention some applications to the existence of nice branched coverings, contact geometry and homomorphisms between braid groups.
-
3:30 - 4:00 pm EDTCoffee Break11th Floor Collaborative Space
-
4:00 - 4:45 pm EDTAlgebraic singular fibers from the symplectic perspective11th Floor Lecture Hall
- Speaker
- Jeremy Van Horn-Morris, University of Arkansas
- Session Chair
- Siddhi Krishna, Columbia University
Abstract
Kodaira classified all singular fibers that can arise in an algebraic fibration with genus 1 fiber. Sakali and I have been looking into a similar classification for genus 2 fibrations by Ogg, Iitaka and later Namikawa and Ueno and we determine how these singular fibrations deform into Lefschetz fibrations. The gamut of tools runs from deformation theory, to Lefschetz fibrations and open books, to braids and braided surfaces, and the branched covers that relate all of them. This is joint work with S. Sakalli.
-
5:00 - 6:30 pm EDTReception11th Floor Collaborative Space
Tuesday, April 26, 2022
-
9:00 - 9:45 am EDTGenericity of pseudo-Anosov mapping classes11th Floor Lecture Hall
- Speaker
- Yvon Verberne, Georgia Institute of Technology
- Session Chair
- Joan Licata, Australian National University
Abstract
The Nielsen-Thurston classification theorem states that mapping classes fall into three types: periodic, reducible, and pseudo-Anosov. One of the famous open problems in the study of mapping class groups is to show that pseudo-Anosov mapping classes are generic. This problem remains open, but it has been proven in one sense. In this talk, I will introduce this open problem and share the progress which has been made in solving the problem.
-
10:00 - 10:30 am EDTCoffee Break11th Floor Collaborative Space
-
10:30 - 11:15 am EDTTight surgeries on torus knots11th Floor Lecture Hall
- Speaker
- Bulent Tosun, University of Alabama
- Session Chair
- Joan Licata, Australian National University
Abstract
In 3-dimensional contact geometry, tight contact structures constitute a geometrically interesting class of contact structures because they form natural boundary conditions for symplectic and certain complex 4-manifolds, and moreover they are deeply related to the topology of 3-manifolds, and Heegaard and Monopole Floer theories. An outstanding open problem in 3-dimensional contact geometry concerns the classification of tight contact structures: When a closed oriented 3-manifold admits a tight contact structure, can one classify all tight contact structures on the manifold? A great deal of important work in the last 25 years has been put towards the resolution of this fundamental question. But at the moment it is fair to say a thorough understanding is far from complete. For example, if one considers the classification question on 3-manifolds obtained by Dehn filling of knots in three sphere, then currently the only such complete classification result for all surgeries available is for the unknot. In this talk, I will report on ongoing joint work with J. Etnyre and H. Min that gives the first complete classification result for all surgeries on an infinite family of torus knots. I will provide further context and motivations for the result, and give some details of the proof.
-
11:30 am - 12:15 pm EDTBraids, homogenization, and the slice-Bennequin inequality11th Floor Lecture Hall
- Speaker
- Peter Feller, ETH Zurich
- Session Chair
- Joan Licata, Australian National University
Abstract
We investigate braid invariants, such as the writhe and the fractional Dehn twist coefficient (FDTC), that arise as the homogenization of a concordance homomorphism, such as tau and Upsilon from the Heegaard Floer tool box. After providing a new characterization of the FDTC, we turn to connections with low-dimensional topology via the concept of homogenization of knot invariants. Concretely, we view the slice Bennequin inequality---a celebrated inequality due to Kronheimer-Mrowka and Rudolph that relates a knot invariant (the smooth 4-genus) and a braid invariant (the writhe)---as a special case of relating knot concordance homomorphisms and their homogenizations. As an application we find that the slice-Bennequin inequality holds with the FDTC in place of the writhe. Teaser: As a motivation for the concept of homogenization, this talk features a neat construction of the field of real numbers you probably dont know about.
-
12:30 - 2:00 pm EDTLunch/Free Time
-
2:00 - 2:45 pm EDTPure Braids, Legendrian Knots, and open book decompositions11th Floor Lecture Hall
- Speaker
- Sinem Onaran, Hacettepe University
- Session Chair
- John Etnyre, Georgia Institute of Technology
Abstract
In this talk, I will discuss the pure braided plat presentation for knots and links in lens spaces. Using such presentations, I will present an algorithm to put the knots on a planar page of an open book decomposition whose monodromy is a product of positive Dehn twists and discuss its applications.
-
3:00 - 3:30 pm EDTCoffee Break11th Floor Collaborative Space
-
3:30 - 4:15 pm EDTKnotted handlebodies11th Floor Lecture Hall
- Speaker
- Maggie Miller, Stanford University
- Session Chair
- John Etnyre, Georgia Institute of Technology
Abstract
We construct 3-dimensional genus-g handlebodies H and H' in the 4-sphere so that H and H' have the same boundary and are homeomorphic rel boundary, but are not smoothly isotopic rel boundary (for all g ≥ 2). In fact, H and H' are not even topologically isotopic rel boundary, even when their interiors are pushed into the 5-ball. This proves a conjecture of Budney and Gabai for g ≥ 2 in a very strong sense, and is a surprising answer to a 1-dimension up version of an open question about Seifert surfaces in S^3. In this talk, I'll give 3- and 4-dimensional motivation and discuss some interesting theorems about knotted surfaces that go into the construction. (This is joint with Mark Hughes and Seungwon Kim.)
Wednesday, April 27, 2022
-
9:00 - 9:45 am EDTAn algorithm to distinguish Legendrian knots11th Floor Lecture Hall
- Virtual Speaker
- Ivan Dynnikov, Steklov Mathematical Institute
- Session Chair
- Hannah Turner, Georgia Institute of Technology
Abstract
In recent joint works with Maxim Prasolov and Vladimir Shastin we developed a method to decide algorithmically whether or not two given Legendrian knots are equivalent. The method is based on the formalism of rectangular diagrams, which we have extended to Giroux' convex surfaces and Legendrian graphs. In many cases, the approach allows to distinguish Legendrian knots that are not distinguished by other known means or have so large complexity that other methods are not feasible to apply to them. We provide an example of two non-equivalent Legendrian knots that cobound an annulus embedded in the three-sphere and tangent to the standard contact structure along the entire boundary. Such examples have not been known earlier.
-
10:00 - 10:30 am EDTCoffee Break11th Floor Collaborative Space
-
10:30 - 11:15 am EDTComputations of ECH capacities and infinite staircases of 4D symplectic embeddings11th Floor Lecture Hall
- Speaker
- Morgan Weiler, Cornell University
- Session Chair
- Hannah Turner, Georgia Institute of Technology
Abstract
Since McDuff proved that embedded contact homology can be used to characterize 4D ellipsoid embeddings in 2011 and McDuff and Schlenk discovered the first "infinite staircase" of ellipsoid embeddings in 2012, a growing body of work has analyzed which toric domains in R^4 (regions symmetric under the natural torus action from C^2) admit infinite staircases of ellipsoid embeddings. From the ECH (embedded contact homology) perspective, symplectic embeddings into a toric domain are determined by a certain set of torus knots on its boundary. We will discuss an algorithm used to identify these torus knots and find a fundamentally new type of infinite staircase in recent work with Magill and McDuff, as well as its possible generalizations and limitations.
-
11:30 am - 12:15 pm EDTComputers, complex curves, and Khovanov homology11th Floor Lecture Hall
- Speaker
- Kyle Hayden, Columbia University
- Session Chair
- Hannah Turner, Georgia Institute of Technology
Abstract
Khovanov homology provides a powerful tool for studying knots and links in 3-space and surfaces in 4-space. I will discuss recent developments that use Khovanov homology to distinguish non-isotopic surfaces in the 4-ball. We will see how braids relate two seemingly disparate strengths of these tools from Khovanov homology: their amenability to calculation (including recent software), and their sensitivity to complex curves.
Based on joint work with Isaac Sundberg and with Alan Du. -
12:30 - 12:40 pm EDTGroup Photo -Immediately following talkGroup Photo (Immediately After Talk) - 11th Floor Lecture Hall
-
12:40 - 2:30 pm EDTLunch/Free Time
-
3:30 - 4:00 pm EDTCoffee Break11th Floor Collaborative Space
Thursday, April 28, 2022
-
9:00 - 9:45 am EDTBirman-Menasco finiteness theorem revisited11th Floor Lecture Hall
- Virtual Speaker
- Tetsuya Ito, Kyoto University
- Session Chair
- Antonio Alfieri, Université du Québec à Montréal (CRM)
Abstract
Birman-Menasco proved the remarkable finiteness theorem: modulo exchange move, the number of the closed n-braid representatives of genus g knots/links is finite. In this talk, I would like to explain various topics related or inspired by Birman-Menasco finiteness theorem. Among them, I will explain its quantitative refinement and applications.
-
10:00 - 10:30 am EDTCoffee Break11th Floor Collaborative Space
-
10:30 - 11:15 am EDTThe fractional Dehn twist coefficient: from braids to mapping class groups11th Floor Lecture Hall
- Speaker
- Diana Hubbard, Brooklyn College
- Session Chair
- Antonio Alfieri, Université du Québec à Montréal (CRM)
Abstract
The braid group is a particular example of the mapping class group of a surface with boundary. An invariant that roughly measures how much a mapping class “twists” about the boundary of the surface is the fractional Dehn twist coefficient. In this talk I will discuss some reasons why we might care about this invariant, several results about the fractional Dehn twist coefficient for braids, and explore to what extent these results can be extended to more general mapping class groups. This talk will include joint work with Peter Feller and Hannah Turner.
-
11:30 am - 12:15 pm EDTVIrtual Artin groups II: pure subgroups and applications11th Floor Lecture Hall
- Speaker
- Paolo Bellingeri, University of Caen Normandy
- Session Chair
- Antonio Alfieri, Université du Québec à Montréal (CRM)
Abstract
This talk can be seen as the second part of the one given by Luis Paris last February. To make the exposition self-contained, I will start with the definition (and the motivation) of this new family of groups and therefore I will present some results (and questions) on pure subgroups and crystallographic quotients of virtual Artin groups. At the end, if time permits, I will present other families of groups that admit similar notions of virtual extension. Joint work with Luis Paris and Anne Laure Thiel.
-
12:30 - 2:30 pm EDTLunch/Free Time
-
2:30 - 3:15 pm EDTAn Unknotting Number for Transverse Knots11th Floor Lecture Hall
- Speaker
- Lisa Traynor, Bryn Mawr College
- Session Chair
- Keiko Kawamuro, University of Iowa
Abstract
I will review some classic results about transverse knots in contact manifolds and then introduce the definition of the transverse unknotting number. For smooth knots, an “ancestor-descendant” relation has been defined by Cantarella-Henrich-Magness-O’Keefe-Perez-Rawdon-Zimmer; I will describe a transverse analog of this relation and then define and calculate some “transverse family trees.” This is joint work with Blossom Jeong.
-
3:30 - 4:00 pm EDTCoffee Break11th Floor Collaborative Space
Friday, April 29, 2022
-
9:00 - 9:45 am EDTNon-positive open books of Stein fillable contact 3-manifolds11th Floor Lecture Hall
- Speaker
- Andy Wand, University of Glasgow
- Session Chair
- Vera Vertesi, University of Vienna
Abstract
We will discuss motivation for and approaches to the question of when the monoid in the mapping class group of a surface with boundary corresponding to monodromies of open book decompositions of Stein fillable contact 3-manifolds differs from the monoid of mapping classes which admit factorizations into positive Dehn twists. In particlar, combining new results with previous work of several people, we give a complete solution to this problem for all but the case of the genus 1 surface with 1 boundary component. This is joint work with Vitalijs Brejevs.
-
10:00 - 10:30 am EDTCoffee Break11th Floor Collaborative Space
-
10:30 - 11:15 am EDTTaut Foliations and Braid Positivity11th Floor Lecture Hall
- Speaker
- Siddhi Krishna, Columbia University
- Session Chair
- Vera Vertesi, University of Vienna
Abstract
The L-space conjecture has been in the news a lot lately: this conjecture predicts that three seemingly different ways to measure the "size" of a 3-manifold are equivalent. In particular, it predicts that a manifold with the "extra" geometric structure of a taut foliation also has "extra" Heegaard Floer homology. In this talk, I'll discuss the motivation for this conjecture, and describe some new results which produce taut foliations by leveraging special properties of positive braid knots. Along the way, we will produce some novel obstructions to braid positivity. I will not assume any background knowledge in Floer or foliation theories; all are welcome!
-
11:30 am - 12:15 pm EDTSymmetric knots and Heegaard Floer homology11th Floor Lecture Hall
- Speaker
- Antonio Alfieri, Université du Québec à Montréal (CRM)
- Session Chair
- Vera Vertesi, University of Vienna
Abstract
I will discuss some open problems regarding symmetric knots, and group actions on 3- and 4-manifolds. In the second part of the talk I will discuss how techniques from Floer theory can be employed to approach some of these problems.
-
12:30 - 2:30 pm EDTLunch/Free Time
-
2:30 - 3:15 pm EDTKhovanov homology and knot detection11th Floor Lecture Hall
- Speaker
- Steven Sivek, Imperial College London
- Session Chair
- Marc Kegel, Humboldt-Universität zu Berlin
Abstract
In this talk I’ll outline a proof that Khovanov homology detects the T(2,5) torus knot. In particular, I’ll explain why a knot with the same Khovanov homology as T(2,5) must be fibered, and then use some deep results in Floer homology to see what we can deduce about the monodromy of that fibration. This is based on joint work with John Baldwin and Ying Hu.
-
3:30 - 4:00 pm EDTCoffee Break11th Floor Collaborative Space
-
4:00 - 4:45 pm EDTFloer homology and right-veering monodromy11th Floor Lecture Hall
- Speaker
- John Baldwin, Boston College
- Session Chair
- Marc Kegel, Humboldt-Universität zu Berlin
Abstract
In this talk I'll explain how knot Floer homology detects whether the monodromy of a fibered knot is right-veering. This gives a purely Floer-theoretic characterization of tight contact structures, and has applications to Dehn surgery and taut foliations. Our proof uses a relationship between Heegaard Floer homology and the dynamics of surface diffeomorphisms. This is based on joint work with Yi Ni and Steven Sivek.
All event times are listed in ICERM local time in Providence, RI (Eastern Daylight Time / UTC-4).
All event times are listed in .
ICERM local time in Providence, RI is Eastern Daylight Time (UTC-4). Would you like to switch back to ICERM time or choose a different custom timezone?