Organizing Committee
- Pietro Belotti
Politecnico di Milano - Marcia Fampa
Federal University of Rio de Janeiro - Fatma Kılınç-Karzan
Carnegie Mellon University - Jon Lee
University of Michigan - Nick Sahinidis
Georgia Institute of Technology - Yuan Zhou
University of Kentucky
Abstract
Mixed-Integer Linear Optimization has been an important topic in optimization theory and applications since the 1960s. As a mathematical subject, it is a rich combination of aspects of geometry, algebra, number theory, and combinatorics. The interplay between the mathematics, modeling, and algorithmics makes it a deep and fascinating subject of applied mathematics, which has had an enormous impact on real-world applications. But many physical systems have nonlinear aspects and further discrete design aspects. So we are naturally led to the paradigm of Mixed-Integer Non-Linear Optimization. But the mathematics and effective algorithmics of this subject are far more daunting than the linear case, and so there is a focus on broad sub-classes where results from the linear world can be lifted up. Furthermore, effective modeling techniques are much more subtle and are intertwined with state-of-the-art algorithmics and software which are rapidly evolving.
This workshop focuses on the latest advances in both areas, Mixed-Integer Linear and Non-Linear Optimization. The workshop is a forum for presenting the latest advances as well as serving as a crucible for new research in these areas.

Confirmed Speakers & Participants
Talks will be presented virtually or in-person as indicated in the schedule below.
- Speaker
- Poster Presenter
- Attendee
- Virtual Attendee
-
Hessa Al-Thani
University of Michigan
-
Miguel Anjos
University of Edinburgh
-
Kurt Anstreicher
University of Iowa
-
Nancy Maribel Arratia Martinez
Universidad de las Américas Puebla
-
Alper Atamturk
University of California - Berkeley
-
Gennady Averkov
Brandeburg Technical University
-
Utsav Awasthi
University of Connecticut
-
Catherine Babecki
University of Washington, Seattle
-
Pietro Belotti
Politecnico di Milano
-
Hande Benson
Drexel University
-
Daniel Bienstock
Columbia University
-
Alex Black
UC Davis
-
Merve Bodur
University of Toronto
-
Hauke Brinkop
Kiel University
-
DENISE CARIAGA SANDOVAL
University of Edinburgh
-
Martina Cerulli
ESSEC Business School of Paris
-
Karthekeyan Chandrasekaran
University of Illinois Urbana-Champaign
-
Effrosyni Chasioti
Kent State University
-
Zhongzhu Chen
University of Michigan
-
Lin Chen
Texas Tech University
-
Ryan Cory-Wright
IBM Research and Imperial College London
-
Francisco Criado Gallart
CUNEF Universidad
-
Jesús De Loera
University of California, Davis
-
Daniel de Roux
Carnegie Mellon University
-
Alberto Del Pia
University of Wisconsin-Madison
-
Daniel Espinoza
Google Research
-
Yuri Faenza
Columbia University
-
Marcia Fampa
Federal University of Rio de Janeiro
-
Antonio Frangioni
Università di Pisa
-
Ricardo Fukasawa
University of Waterloo
-
Rohan Ghuge
University of Michigan
-
Andres Gomez
University of Southern California
-
Monserrat Guedes Ayala
The University of Edinburgh
-
Oktay Gunluk
Cornell University
-
Akshay Gupte
University of Edinburgh
-
Chengyue He
Columbia University
-
Dorit Hochbaum
University of California, Berkeley
-
Fred Holt
T-Mobile
-
Klaus Jansen
Kiel University
-
Sean Kafer
University of Waterloo
-
Aida Khajavirad
Lehigh University
-
Sammy Khalife
Johns Hopkins University
-
Fatma Kılınç-Karzan
Carnegie Mellon University
-
Matthias Köppe
UC Davis
-
Simge Küçükyavuz
Northwestern University
-
Shubhang Kulkarni
University of Illinois, Urbana-Champaign
-
Anatoliy Kuznetsov
Georgia Institute of Technology
-
Jon Lee
University of Michigan
-
Miguel Lejeune
George Washington University
-
Yongchun Li
Georgia Institute of Technology
-
Jeff Linderoth
University of Wisconsin-Madison
-
Siyue Liu
Carnegie Mellon University
-
Feng Liu
Stevens Institute of Technology
-
Tobia Marcucci
MIT
-
Juan Carlos Martinez Mori
Cornell University
-
Chiara Meroni
ICERM
-
Gonzalo Muñoz
Universidad de O'Higgins
-
Bento Natura
Georgia Tech
-
Yuchong Pan
MIT
-
Dimitri Papadimitriou
University of Antwerp
-
Marc Pfetsch
TU Darmstadt
-
Tianjie Qiu
Brown University
-
Yushan Qu
University of Michigan
-
Rodolfo Quintero Ospina
Lehigh University
-
Bárbara Rodrigues
University of Edinburgh
-
Nick Sahinidis
Georgia Institute of Technology
-
Nimita Shinde
IITB-Monash Research Academy
-
Renata Sotirov
Tilburg University
-
Emily Speakman
University of Colorado - Denver
-
Mohit Tawarmalani
Purdue University
-
Fei Wang
University of Waterloo
-
Chengyang Wang
UC Davis
-
Jie Wang
Georgia Institute of Technology
-
Weijun Xie
Georgia Institute of Technology
-
Luze Xu
University of California, Davis
-
Liding Xu
ECOLE POLYTECHNIQUE
-
Chao Xu
University of Electronic Science and Technology of China
-
Shixuan Zhang
Brown University
-
Yuan Zhou
University of Kentucky
-
Yiran Zhu
The University of Edinburgh
Workshop Schedule
Monday, February 27, 2023
-
8:50 - 9:00 am ESTWelcome11th Floor Lecture Hall
- Brendan Hassett, ICERM/Brown University
-
9:00 - 9:45 am ESTOn Constrained Mixed-Integer DR-Submodular Minimization11th Floor Lecture Hall
- Speaker
- Simge Küçükyavuz, Northwestern University
- Session Chair
- Jon Lee, University of Michigan
Abstract
Diminishing Returns (DR)-submodular functions encompass a broad class of functions that are generally non-convex and non-concave. We study the problem of minimizing any DR-submodular function, with continuous and general integer variables, under box constraints and possibly additional monotonicity constraints. We propose valid linear inequalities for the epigraph of any DR-submodular function under the constraints. We further provide the complete convex hull of such an epigraph, which, surprisingly, turns out to be polyhedral. We propose a polynomial-time exact separation algorithm for our proposed valid inequalities, with which we first establish the polynomial-time solvability of this class of mixed-integer nonlinear optimization problems. This is joint work with Kim Yu.
-
10:00 - 10:30 am ESTCoffee Break11th Floor Collaborative Space
-
10:30 - 11:15 am ESTSemidefinite Optimization with Eigenvector Branching11th Floor Lecture Hall
- Speaker
- Kurt Anstreicher, University of Iowa
- Session Chair
- Jon Lee, University of Michigan
Abstract
Semidefinite programming (SDP) problems typically utilize the constraint that X-xx' is positive semidefinite to obtain a convex relaxation of the condition X=xx', where x is an n-vector. We consider a new hyperplane branching method for SDP based on using an eigenvector of X-xx'. This branching technique is related to previous work of Saxeena, Bonami and Lee who used such an eigenvector to derive a disjunctive cut. We obtain excellent computational results applying the new branching technique to difficult instances of the two-trust-region subproblem.
-
11:30 am - 12:15 pm ESTA Breakpoints Based Method for the Maximum Diversity and Dispersion Problems11th Floor Lecture Hall
- Speaker
- Dorit Hochbaum, University of California, Berkeley
- Session Chair
- Jon Lee, University of Michigan
Abstract
The maximum diversity, or dispersion, problem (MDP), is to select from a given set a subset of elements of given size (budget), so that the sum of pairwise distances, or utilities, between the selected elements is maximized. We introduce here a method, called the Breakpoints (BP) algorithm, based on a technique proposed in Hochbaum (2009), to generate the concave piecewise linear envelope of the solutions to the relaxation of the problem for all values of the budget. The breakpoints in this envelope are provably optimal for the respective budgets and are attained using a parametric cut procedure that is very efficient. The problem is then solved, for any given value of the budget, by applying a greedy-like method to add or subtract nodes from adjacent breakpoints. This method works well if for the given budget there are breakpoints that are ``close". However, for many data sets and budgets this is not the case, and the breakpoints are sparse. We introduce a perturbation technique applied to the utility values in cases where there is paucity of breakpoints, and show that this results in denser collections of breakpoints. Furthermore, each optimal perturbed solution is quite close to an optimal non-perturbed solution. We compare the performance of our breakpoints algorithm to leading methods for these problems: The metaheuristic OBMA, that was shown recently to perform better than GRASP, Neighborhood search and Tabu Search, and Gurobi--an integer programming software. It is demonstrated that our method dominates the performance of these methods in terms of computation speed and in comparable or better solution quality.
-
12:30 - 2:30 pm ESTLunch/Free Time
-
2:30 - 3:15 pm ESTApproximating integer programs with monomial orders11th Floor Lecture Hall
- Virtual Speaker
- Akshay Gupte, University of Edinburgh
- Session Chair
- Dorit Hochbaum, University of California, Berkeley
Abstract
We consider the problem of maximizing a function over integer points in a compact set. Inner- and outer-approximations of the integer feasible set are obtained using families of monomial orders over the integer lattice. The convex hull is characterized when the monomial orders satisfy some properties. When the objective function is submodular or subadditive, we provide a theoretical guarantee on the quality of the inner-approximations in terms of their gap to the optimal value. An algorithm is proposed to generate feasible solutions, and it is competitive with a commercial solver in numerical experiments on benchmark test instances for integer LPs.
-
3:30 - 4:00 pm ESTCoffee Break11th Floor Collaborative Space
-
4:00 - 4:45 pm ESTSolving ACOPF problems11th Floor Lecture Hall
- Speaker
- Daniel Bienstock, Columbia University
- Session Chair
- Dorit Hochbaum, University of California, Berkeley
Abstract
In this talk we will detail our recent experience in solving the ACOPF problem, a notorious MINLP. We will do this from two perspectives. First, we will detail our experience in the recent, and on-going GO competition for solving modern, large-scale versions of ACOPF which include scenario constraints and integer variables. Second, we will outline challenges to state-of-the-art MINLP solvers based on spatial branch-and-bound that arise in ACOPF instances. Finally we will discuss some fundamental issues related to numerical precision.
-
5:00 - 6:30 pm ESTReception11th Floor Collaborative Space
Tuesday, February 28, 2023
-
9:00 - 9:45 am ESTMaximal quadratic free sets: basic constructions and steps towards a full characterization11th Floor Lecture Hall
- Speaker
- Gonzalo Muñoz, Universidad de O'Higgins
- Session Chair
- Daniel Bienstock, Columbia University
Abstract
In 1971, Balas introduced intersection cuts as a method for generating cutting planes in integer optimization. These cuts are derived from convex S-free sets, and inclusion-wise maximal S-free sets yield the strongest intersection cuts. When S is a lattice, maximal S-free sets are well-studied from theoretical and computational standpoints. In this talk, we focus on the case when S is defined by a general quadratic inequality and show how to construct basic maximal quadratic-free sets. Additionally, we explore how to generalize the basic procedure to construct a plethora of new maximal quadratic-free sets for homogeneous quadratics. Joint work with Joseph Paat and Felipe Serrano.
-
10:00 - 10:30 am ESTCoffee Break11th Floor Collaborative Space
-
10:30 - 11:15 am ESTFrom micro to macro structure: a journey in company of the Unit Commitment problem11th Floor Lecture Hall
- Speaker
- Antonio Frangioni, Università di Pisa
- Session Chair
- Daniel Bienstock, Columbia University
Abstract
The fact that "challenging problems motivate methodological advances", as obvious as it may seem, is nonetheless very true. I was drawn long ago to Unit Commitment problems because of a specific methodology, but studying it led us to interesting results for entirely different ones. This talk will summarise on (the current status of) a long journey of discovery that ebbed and flowed between different notions of structure, starting from the "macro" one of spatial decomposition and its algorithmic implications, descending to the "micro" one of the Perspective Reformulation of tiny fragments of the problem, putting both back together to full-problem size with the definition of strong but large formulations (and the nontrivial trade-offs they entail), and finally skyrocketing to large- and huge-scale problems (stochastic UC, stochastic reservoirs optimization, long-term energy system design) where UC (and its sub-structures) is but one of the multiple nested forms of structure. The talk will necessarily have to focus on a few of the results that hopefully have broader usefulness than just UC, among which a recent one on the Convex Hull of Star-Shaped MINLPs, but it will also try to give a broad-brush of the larger picture, with some time devoted to discussing the nontrivial implications of actually implementing solution methods for huge-scale problems with multiple nested form of heterogeneous structure and the (surely partial and tentative) attempts at tackling these issues within the SMS++ modelling system.
-
11:30 am - 12:15 pm ESTA fast combinatorial algorithm for the bilevel knapsack interdiction problem11th Floor Lecture Hall
- Speaker
- Ricardo Fukasawa, University of Waterloo
- Session Chair
- Daniel Bienstock, Columbia University
Abstract
The single-level (classical) knapsack problem consists of picking a subset of n items maximizing profit, subject to a budget (knapsack) constraint. In the bilevel knapsack interdiction problem, there are two levels of decision-makers. The lower-level decision maker is attempting to solve the classical knapsack problem. The upper-level decision maker has the goal of minimizing the profit of the lower-level decision maker, by picking items that will be then unavailable. The upper-level has its own (independent) knapsack constraint to satisfy too. Previous approaches to this problem were based on using MIP solvers. We develop a branch-and-bound algorithm for the problem that relies on a strong lower bound and specialized branching, using combinatorial arguments. Our approach improves on the previous best approaches by up to two orders of magnitude in our test instances, significantly increasing the size of instances that can be consistently solved to optimality. This is joint work with Noah Weninger.
-
12:30 - 2:30 pm ESTLunch/Free Time
-
2:30 - 3:15 pm ESTNetwork Design Queueing MINLP: Models, Reformulations, and Algorithms11th Floor Lecture Hall
- Speaker
- Miguel Lejeune, George Washington University
- Session Chair
- Merve Bodur, University of Toronto
Abstract
We present several queueing-based optimization models to design networks in which the objective is to minimize the response time. The networks are modelled as collections of interdependent M/G/1 or M/G/K queueing systems with fixed and mobile servers. The optimization models take the form of nonconvex MINLP problems with fractional and bilinear terms. We derive a reformulation approach and propose a solution method that features a warm-start component, new optimality-based bound tightening (OBBT) techniques, and an outer approximation algorithm. In particular, we propose new MILP and feasibility OBBT models that can derive multiple variable bounds at once. The proposed approach is applied to the drone-based delivery of automated external defibrillators to out-of-hospital cardiac arrests (OHCA) and naloxone to opioid overdoses. The computational experiments are based on real-life data from Virginia Beach, and ascertain the computational efficiency of the approach and its impact on the response time and the probability of survival of patients.
-
3:30 - 4:00 pm ESTCoffee Break11th Floor Collaborative Space
-
4:00 - 4:45 pm ESTIntegrated Computational and Experimental Research in Mixed Integer Programming with SageMath11th Floor Lecture Hall
- Virtual Speaker
- Matthias Köppe, UC Davis
- Session Chair
- Merve Bodur, University of Toronto
Abstract
I will introduce SageMath, a general-purpose, Python-based, open-source mathematics system in development since 2005, from the viewpoint of its use in Mixed Integer Programming research. Originally conceived as a computer algebra system focused on algebraic number theory, SageMath has grown to a major integrating force in the mathematical software world that provides convenient and unified access to the best libraries and systems for polyhedral geometry, mixed integer linear programming, lattices, graph theory, commutative algebra, symbolic computation, computational group theory, and more. I will demonstrate some of these capabilities. The SageMath community welcomes contributions in the form of expository mathematical writing, constructions, algorithm development and implementation, cataloging, mathematical software integration, and more. I will highlight some possible entry points for making such contributions.
Wednesday, March 1, 2023
-
9:00 - 9:45 am ESTMinimizing quadratics over integers11th Floor Lecture Hall
- Speaker
- Alberto Del Pia, University of Wisconsin-Madison
- Session Chair
- Nick Sahinidis, Georgia Institute of Technology
Abstract
Mixed integer quadratic programming is the problem of minimizing a quadratic polynomial over points in a polyhedral region with some integer components. It is a natural extension of mixed integer linear programming and it has a wide array of applications. In this talk, I will survey some recent theoretical developments in mixed integer quadratic programming, with a focus on complexity, algorithms, and fundamental properties.
-
10:00 - 10:30 am ESTCoffee Break11th Floor Collaborative Space
-
10:30 - 11:15 am ESTOptimizing for Equity in Urban Planning11th Floor Lecture Hall
- Speaker
- Emily Speakman, University of Colorado - Denver
- Session Chair
- Nick Sahinidis, Georgia Institute of Technology
Abstract
In the Environmental Justice literature, the Kolm-Pollak Equally Distributed Equivalent (EDE) is the preferred metric for quantifying the experience of a population. The metric incorporates both the center and the spread of the distribution of the individual experiences, and therefore, captures the experience of an “average” individual more accurately than the population mean. In particular, the mean is unable to measure the equity of a distribution, while the Kolm-Pollak EDE is designed to penalize for inequity. In this talk, we explore the problem of finding an optimal distribution from various alternatives using the Kolm-Pollak EDE to quantify optimal. Unfortunately, optimizing over the Kolm-Pollak EDE in a mathematical programming model is not trivial because of the nonlinearity of the function. We discuss methods to overcome this difficulty and present computational results for practical applications. Our results demonstrate that optimizing over the Kolm-Pollak EDE in a standard facility location model has the same computational burden as optimizing over the population mean. Moreover, it often results in solutions that are significantly more equitable while having little impact on the mean of the distribution, versus optimizing over the mean directly. Joint work with Drew Horton, Tom Logan, and Daphne Skipper
-
11:30 am - 12:15 pm ESTExplicit convex hull description of bivariate quadratic sets with indicator variables11th Floor Lecture Hall
- Speaker
- Aida Khajavirad, Lehigh University
- Session Chair
- Nick Sahinidis, Georgia Institute of Technology
Abstract
We obtain an explicit description for the closure of the convex hull of bivariate quadratic sets with indicator variables the space of original variables. We present a simple separation algorithm that can be incorporated in branch-and-cut based solvers to enhance the quality of existing relaxations.
-
12:25 - 12:30 pm ESTGroup Photo (Immediately After Talk)11th Floor Lecture Hall
-
12:30 - 2:30 pm ESTNetworking LunchLunch/Free Time - 11th Floor Collaborative Space
-
2:30 - 3:30 pm EST
-
3:30 - 4:00 pm ESTCoffee Break10th Floor Collaborative Space
-
4:00 - 4:45 pm ESTMatrix Completion over GF(2) with Applications to Index Coding11th Floor Lecture Hall
- Speaker
- Jeff Linderoth, University of Wisconsin-Madison
- Session Chair
- Kurt Anstreicher, University of Iowa
Abstract
We discuss integer-programming-based approaches to doing low-rank matrix completion over the finite field of two elements. We are able to derive an explicit description for the convex hull of an individual matrix element in the decomposition, using this as the basis of a new formulation. Computational results showing the superiority of the new formulation over a natural formulation based on McCormick inequalities with integer-valued variables, and an extended disjunctive formulation arising from the parity polytope are given in the context of linear index coding.
Thursday, March 2, 2023
-
9:00 - 9:45 am ESTDantzig-Wolfe Bound by Cutting Planes11th Floor Lecture Hall
- Speaker
- Oktay Gunluk, Cornell University
- Session Chair
- Yuan Zhou, University of Kentucky
Abstract
Dantzig-Wolfe (DW) decomposition is a well-known technique in mixed-integer programming for decomposing and convexifying constraints to obtain potentially strong dual bounds. We investigate Fenchel cuts that can be derived using the DW decomposition algorithm and show that these cuts can provide the same dual bounds as DW decomposition. We show that these cuts, in essence, decompose the objective function cut one can simply write using the DW bound. Compared to the objective function cut, these Fenchel cuts lead to a formulation with lower dual degeneracy, and consequently a better computational performance under the standard branch-and-cut framework in the original space. We also discuss how to strengthen these cuts to improve the computational performance further. We test our approach on the Multiple Knapsack Assignment Problem and show that the proposed cuts are helpful in accelerating the solution time without the need to implement branch and price.
-
10:00 - 10:30 am ESTCoffee Break11th Floor Collaborative Space
-
10:30 - 11:15 am ESTNumber of inequalities in integer-programming descriptions of a set11th Floor Lecture Hall
- Virtual Speaker
- Gennady Averkov, Brandeburg Technical University
- Session Chair
- Yuan Zhou, University of Kentucky
Abstract
I am going to present results obtained jointly with Manuel Aprile, Marco Di Summa, Christopher Hojny and Matthias Schymura. Assume you want to describe a set X of integer points as the set of integer solutions of a linear system of inequalities and you want to use a system for X with the minimum number of inequalities. Can you compute this number algorithmically? The answer is not known in general! Does the choice of the coefficient field (like the field of real and the fiel of rational numbers) have any influence on the number you get as the answer? Surprisingly, it does! On a philosophical level, should we do integer programming over the rationals or real coefficients? That's actually not quite clear, but for some aspects there is a difference so that it might be interesting to reflect on this point and weigh pros and cons.
-
11:30 am - 12:15 pm EST2x2-Convexifications for Convex Quadratic Optimization with Indicator Variables11th Floor Lecture Hall
- Speaker
- Alper Atamturk, University of California - Berkeley
- Session Chair
- Yuan Zhou, University of Kentucky
Abstract
In this talk, we present new strong relaxations for the convex quadratic optimization problem with indicator variables. For the bivariate case, we describe the convex hull of the epigraph in the original space of variables, and also give a conic quadratic extended formulation. Then, using the convex hull description for the bivariate case as a building block, we derive an extended SDP relaxation for the general case. This new formulation is stronger than other SDP relaxations proposed in the literature for the problem, including Shor's SDP relaxation, the optimal perspective relaxation as well as the optimal rank-one relaxation. Computational experiments indicate that the proposed formulations are quite effective in reducing the integrality gap of the optimization problems. This is a joint work with Shaoning Han and Andres Gomez.
-
12:30 - 2:30 pm ESTLunch/Free Time
-
2:30 - 3:15 pm ESTInteger Semidefinite Programming - a New Perspective11th Floor Lecture Hall
- Speaker
- Renata Sotirov, Tilburg University
- Session Chair
- Fatma Kılınç-Karzan, Carnegie Mellon University
Abstract
Integer semidefinite programming can be viewed as a generalization of integer programming where the vector variables are replaced by positive semidefinite integer matrix variables. The combination of positive semidefiniteness and integrality allows to formulate various optimization problems as integer semidefinite programs (ISDPs). Nevertheless, ISDPs have received attention only very recently. In this talk we show how to extend the Chv\'atal-Gomory (CG) cutting-plane procedure to ISDPs. We also show how to exploit CG cuts in a branch-and-cut framework for ISDPs. Finally, we demonstrate the practical strength of the CG cuts in our branch-and-cut algorithm. Our results provide a new perspective on ISDPs.
-
3:30 - 4:00 pm ESTCoffee Break11th Floor Collaborative Space
-
4:00 - 4:45 pm ESTReciprocity between tree ensemble optimization and multilinear optimization11th Floor Lecture Hall
- Speaker
- Mohit Tawarmalani, Purdue University
- Session Chair
- Fatma Kılınç-Karzan, Carnegie Mellon University
Abstract
We establish a polynomial equivalence between tree ensemble optimization and optimization of multilinear functions over the Cartesian product of simplices. Using this, we derive new formulations for tree ensemble optimization problems and obtain new convex hull results for multilinear polytopes. A computational experiment on multi-commodity transportation problems with costs modeled using tree ensembles shows the practical advantage of our formulation relative to existing formulations of tree ensembles and other piecewise-linear modeling techniques. We then consider piecewise polyhedral relaxation of multilinear optimization problems. We provide the first ideal formulation over non-regular partitions. We also improve the relaxations over regular partitions by adding linking constraints. These relaxations significantly improve performance of ALPINE and are included in the software.
This is joint work with Jongeun Kim (Google) and J.-P. P. Richard (University of Minnesota).
Friday, March 3, 2023
-
9:00 - 9:45 am ESTMarkov Chain-based Policies for Multi-stage Stochastic Integer Linear Programming11th Floor Lecture Hall
- Speaker
- Merve Bodur, University of Toronto
- Session Chair
- Pietro Belotti, Politecnico di Milano
Abstract
We introduce a novel aggregation framework to address multi-stage stochastic programs with mixed-integer state variables and continuous local variables (MSILPs). Our aggregation framework imposes additional structure to the integer state variables by leveraging the information of the underlying stochastic process, which is modeled as a Markov chain (MC). We present a novel branch-and-cut algorithm integrated with stochastic dual dynamic programming as an exact solution method to the aggregated MSILP, which can also be used in an approximation form to obtain dual bounds and implementable feasible solutions. Moreover, we apply two-stage linear decision rule (2SLDR) approximations and propose MC-based variants to obtain high-quality decision policies with significantly reduced computational effort. We test the proposed methodologies in a novel MSILP model for hurricane disaster relief logistics planning.
-
10:00 - 10:30 am ESTCoffee Break11th Floor Collaborative Space
-
10:30 - 11:15 am ESTOn practical first order methods for LP11th Floor Lecture Hall
- Speaker
- Daniel Espinoza, Google Research
- Session Chair
- Pietro Belotti, Politecnico di Milano
Abstract
Solving linear programs is nowadays an everyday task. Used even in embedded systems, but also run on very large hardware. However, solving very large models has remained a major challenge. Either because most successful algorithms require more than linear space to solve such models, or because they become extremely slow in practice. Although the concept of first order-methods, and potential function methods have been around for a long time, they have failed to be broadly applicable, or no competitive implementations are widely available. In this talk we will be motivating the need for such a class of algorithms, share some (known) evidence that such schemes have worked in special situations, and present results of experiments running one such algorithm (PDLP) both in standard benchmark models, and also on very large models arising from network planning. And also on a first order method for general LPs using an exponential potential function to deal with unstructured constraints.
-
11:30 am - 1:30 pm ESTLunch/Free Time
-
1:30 - 2:15 pm ESTIdeal polyhedral relaxations of non-polyhedral sets11th Floor Lecture Hall
- Speaker
- Andres Gomez, University of Southern California
- Session Chair
- Marcia Fampa, Federal University of Rio de Janeiro
Abstract
Algorithms for mixed-integer optimization problems are based on the sequential construction of tractable relaxations of the discrete problem, until the relaxations are sufficiently tight to guarantee optimality of the resulting solution. For classical operational and logistics problems, which can be formulated as mixed-integer linear optimization problems, it is well-known that such relaxations should be polyhedral. Thus, there has been a sustained stream of research spanning several decades on constructing and exploiting linear relaxations. As a consequence, mixed-integer linear optimization problems deemed to be intractable 30 years old can be solved to optimality in seconds or minutes nowadays. Modern statistical and decision-making problems call for mixed-integer nonlinear optimization (MINLO) formulations, which inherently lead to non-polyhedral relaxations. There has been a substantial progress in extending and adapting techniques for both the mixed-integer linear optimization and continuous nonlinear literatures, but there may a fundamental limit on the effectiveness of such approaches as they fail to exploit the specific characteristics of MINLO problems. In this talk, we discuss recent progress in studying the fundamental structure of MINLO problems. In particular, we show that such problems have a hidden polyhedral substructure that captures the non-convexities associated with discrete variables. Thus, by exploiting this substructure, convexification theory and methods based on polyhedral theory can naturally be used study non-polyhedral sets. We also provide insights into how to design algorithms that tackle the ensuing relaxations.
-
2:30 - 3:15 pm ESTOn Dantzig-Wolfe Relaxation of Rank Constrained Optimization: Exactness, Rank Bounds, and Algorithms11th Floor Lecture Hall
- Speaker
- Weijun Xie, Georgia Institute of Technology
- Session Chair
- Marcia Fampa, Federal University of Rio de Janeiro
Abstract
This paper studies the rank constrained optimization problem (RCOP) that aims to minimize a linear objective function over intersecting a prespecified closed rank constrained domain set with two-sided linear matrix inequalities. The generic RCOP framework exists in many nonconvex optimization and machine learning problems. Although RCOP is, in general, NP-hard, recent studies reveal that its Dantzig-Wolfe Relaxation (DWR), which refers to replacing the domain set by its closed convex hull, can lead to a promising relaxation scheme. This motivates us to study the strength of DWR. Specifically, we develop the first-known necessary and sufficient conditions under which the DWR and RCOP are equivalent. Beyond the exactness, we prove the rank bound of optimal DWR extreme points. We design a column generation algorithm with an effective separation procedure. The numerical study confirms the promise of the proposed theoretical and algorithmic results.
-
3:30 - 4:00 pm ESTCoffee Break11th Floor Collaborative Space
All event times are listed in ICERM local time in Providence, RI (Eastern Daylight Time / UTC-4).
All event times are listed in .
ICERM local time in Providence, RI is Eastern Daylight Time (UTC-4). Would you like to switch back to ICERM time or choose a different custom timezone?
Request Reimbursement
This section is for general purposes only and does not indicate that all attendees receive funding. Please refer to your personalized invitation to review your offer.
- ORCID iD
- As this program is funded by the National Science Foundation (NSF), ICERM is required to collect your ORCID iD if you are receiving funding to attend this program. Be sure to add your ORCID iD to your Cube profile as soon as possible to avoid delaying your reimbursement.
- Acceptable Costs
-
- 1 roundtrip between your home institute and ICERM
- Flights on U.S. or E.U. airlines – economy class to either Providence airport (PVD) or Boston airport (BOS)
- Ground Transportation to and from airports and ICERM.
- Unacceptable Costs
-
- Flights on non-U.S. or non-E.U. airlines
- Flights on U.K. airlines
- Seats in economy plus, business class, or first class
- Change ticket fees of any kind
- Multi-use bus passes
- Meals or incidentals
- Advance Approval Required
-
- Personal car travel to ICERM from outside New England
- Multiple-destination plane ticket; does not include layovers to reach ICERM
- Arriving or departing from ICERM more than a day before or day after the program
- Multiple trips to ICERM
- Rental car to/from ICERM
- Flights on a Swiss, Japanese, or Australian airlines
- Arriving or departing from airport other than PVD/BOS or home institution's local airport
- 2 one-way plane tickets to create a roundtrip (often purchased from Expedia, Orbitz, etc.)
- Travel Maximum Contributions
-
- New England: $250
- Other contiguous US: $750
- Asia & Oceania: $2,000
- All other locations: $1,500
- Note these rates were updated in Spring 2022 and superseded any prior invitation rates. Any invitations without travel support will still not receive travel support.
- Reimbursement Requests
-
Request Reimbursement with Cube
Refer to the back of your ID badge for more information. Checklists are available at the front desk and in the Reimbursement section of Cube.
- Reimbursement Tips
-
- Scanned original receipts are required for all expenses
- Airfare receipt must show full itinerary and payment
- ICERM does not offer per diem or meal reimbursement
- Allowable mileage is reimbursed at prevailing IRS Business Rate and trip documented via pdf of Google Maps result
- Keep all documentation until you receive your reimbursement!
- Reimbursement Timing
-
6 - 8 weeks after all documentation is sent to ICERM. All reimbursement requests are reviewed by numerous central offices at Brown who may request additional documentation.
- Reimbursement Deadline
-
Submissions must be received within 30 days of ICERM departure to avoid applicable taxes. Submissions after thirty days will incur applicable taxes. No submissions are accepted more than six months after the program end.