Organizing Committee
- Robyn Brooks
Boston College - Ty Frazier
University of MInnesota - Paige Helms
University of Washington - Ryan Moruzzi Jr
California State University, East Bay - Anisah Nu’Man
Spelman College - Christopher O'Neill
San Diego State University - Javier Ronquillo Rivera
Bridge to Enter Advanced Mathematics - Sherilyn Tamagawa
Davidson College
Abstract
The primary mission of the Underrepresented Students in Topology and Algebra Research Symposium (USTARS) is to showcase the excellent research conducted by underrepresented students studying topology and algebra. Dedicated to furthering the success of underrepresented students, USTARS seeks to broaden participation in the mathematical sciences by cultivating research and mentoring networks. USTARS is open to all people interested in the topological and algebraic fields.
A note from the organizing committee:
Applicants, for those wanting to give a talk at the conference there is an application deadline of February 26 at 11:59 pm for speakers in order to make a timely decision. We have funding from the NSA for some per diem for both days of the conference, which will also be decided from applicants who apply by the deadline. If you do receive funding, you are required to attend the entire conference.
Confirmed Speakers & Participants
Talks will be presented virtually or in-person as indicated in the schedule below.
- Speaker
- Poster Presenter
- Attendee
- Virtual Attendee
-
Nachiketa Adhikari
University of Illinois at Urbana-Champaign
-
Jonathan Alcaraz
University of California, Riverside
-
Jose Aranda Cuevas
University of Iowa
-
Andrea Arauza Rivera
Cal State East Bay
-
Shivam Bhatt
University of Toronto
-
Robyn Brooks
Boston College
-
Abigail Burnett
Iowa State University
-
Maxine Calle
University of Pennsylvania
-
Jan Tracy Camacho
San Francisco State University
-
Nikita Campos
California State Polytechnic University, Pomona
-
Yassin Chandran
The Graduate Center, City University of New York
-
Henry Chimal-Dzul
Ohio University
-
Alvaro Cornejo
San Francisco State University
-
Erin Dolecheck
Iowa State University
-
Ranthony Edmonds
The Ohio State University
-
Shakuan Frankson
Howard University
-
Ty Frazier
University of MInnesota
-
Jacob Garcia
University of California, Riverside
-
Ajeet Gary
New York University
-
Edray Goins
Pomona College
-
Helen Grundman
Bryn Mawr College
-
Kimberly Hadaway
Williams College
-
Pamela E. Harris
Williams College
-
Paige Helms
University of Washington
-
Lydia Holley
University of Illinois at Chicago
-
Kim Holman
Auburn University
-
Emily Hoopes-Boyd
Kent State University
-
Janet Huffman
University of Kentucky
-
Erik Insko
Florida Gulf Coast University
-
Garett Jones
Marshfield Clinic Health System
-
Ashlee Kalauli
University of California, Santa Barbara
-
Bethany Kubik
University of Minnesota Duluth
-
Leah Leiner
Temple University
-
Marissa Loving
Georgia Institute of Technology-Main Campus
-
Brittney Marsters
San Diego State University
-
Gage Martin
Boston College
-
Aisha Mechery
Rice University
-
Ryan Moruzzi Jr
California State University, East Bay
-
Mariah Moschetti
San Diego State University
-
Evangelos Nastas
SUNY
-
Anisah Nu’Man
Spelman College
-
Christopher O'Neill
San Diego State University
-
Ashley Pallone
Ohio University
-
Christopher Perez
Loyola University New Orleans
-
Candice Price
Smith College
-
Sarah Pritchard
Georgia Institute of Technology
-
Zhijun (George) Qiao
University of Texas Rio Grande Valley
-
Asiyeh Rafieipour
Ohio University
-
Steph Reyes
None
-
Elena Rodriguez Chavez
University of California Riverside
-
Javier Ronquillo Rivera
Bridge to Enter Advanced Mathematics
-
Amanda Ruiz
University of San Diego
-
Noelle Sawyer
Southwestern University
-
Mohd Ibrahim Sheikh
Pusan National University
-
Gabriel Sosa Castillo
Colgate University
-
Roberto Soto
California State University Fullerton
-
Shannon Talbott
Moravian College
-
Sherilyn Tamagawa
Davidson College
-
Andrew Tawfeek
University of Washington
-
Kalani Thalagoda
University Of North Carolina at Greensboro
-
Trang Tran
Ucsc
-
Jagerynn Verano
University of Illinois at Chicago
-
Andrés Vindas Meléndez
University of Kentucky
-
Brandis Whitfield
Temple University
-
Robin Wilson
California State Polytechnic University, Pomona
-
Tian An Wong
University of Michigan-Dearborn
-
Majed Zailaee
Ohio University
Workshop Schedule
Thursday, April 29, 2021
-
11:40 - 11:45 am EDTICERM WelcomeWelcome - Virtual
- Brendan Hassett, ICERM/Brown University
-
11:45 am - 12:00 pm EDTWelcomeVirtual
- Ryan Moruzzi Jr, California State University, East Bay
-
12:00 - 12:30 pm EDTSmall finite rings satisfying some ring propertiesVirtual
- Speaker
- Henry Chimal-Dzul, Ohio University
- Moderator
- Ryan Moruzzi Jr, California State University, East Bay (Virtual)
Abstract
Various ring properties trivially satisfied by commutative rings have given place to various classes of rings. These include reflexive, semicommutative, abelian, and reversible rings. In this talk we present various examples of finite rings with the smallest possible cardinality satisfying those ring properties. In particular, special attention is devoted to a reflexive abelian non-semicommutative ring, whose cardinality has been shown to be 256.
-
12:00 - 12:30 pm EDTAnnular Khovanov homology and meridional disksVirtual
- Speaker
- Gage Martin, Boston College
- Moderator
- Javier Ronquillo Rivera, Bridge to Enter Advanced Mathematics (Virtual)
Abstract
The relationship between quantum link invariants and topological invariants of a link has been a motivating question in low-dimensional topology. For annular Khovanov homology, the wrapping conjecture of Hoste-Przytycki suggests that the maximal non-zero annular grading is related to embeddings of meridional disks. We provide further evidence for this conjecture by exhibiting infinite families of annular links for which the gap between the maximum non-zero annular Khovanov grading and the maximum non-zero annular Floer-theoretic gradings is arbitrarily large. We also show this gap exists at the decategorified level for some of the infinite families. Additionally, we show that certain satellite operations can not be used to construct counterexamples to the categorified wrapping conjecture.
-
12:30 - 1:00 pm EDTDecompositions of the $h^*$-polynomial for rational polytopesVirtual
- Speaker
- Andres Vindas Melendez, University of Kentucky
- Moderator
- Ryan Moruzzi Jr, California State University, East Bay (Virtual)
Abstract
A rational convex polytope, i.e., the convex hull of finitely many rational points in \mathbb{Q}^d, its lattice point count, and its associated combinatorial invariants provide information on quantities of geometric and algebraic interest. In algebraic geometry, a polytope $P$ corresponds to a projective toric variety $X_P$ and an ample line bundle $L$, whose Hilbert polynomial enumerates the lattice points in $P$. In commutative algebra, lattice point enumeration appears in the guise of Hilbert series of graded rings. In the representation theory of semisimple Lie algebras, the Kostant partition function enumerates the lattice points in flow polytopes. The lattice point enumerator results to be a quasipolynomial, known as the Ehrhart quasipolynomial of a rational polytope P, and encodes the number of integer lattice points in dilates of $P$. The $h^*$ -polynomial of $P$ is the numerator of the accompanying generating function. We provide two decomposition formulas for the $h^*$-polynomial of a rational polytope. The first decomposition generalizes a theorem of Betke and McMullen for lattice polytopes. We use our formula to provide a novel proof of Stanley's Monotonicity Theorem for the $h^*$-polynomial of a rational polytope. The second decomposition generalizes a result of Stapledon, which we use to provide rational extensions of the Stanley and Hibi inequalities satisfied by the coefficients of the $h^*$-polynomial for lattice polytopes. Lastly, we apply our results to rational polytopes containing the origin whose duals are lattice polytopes. This is joint work with Matthias Beck (SFSU & FU Berlin) and Ben Braun (Univ. of Kentucky).
-
12:30 - 1:00 pm EDTLet's Talk About... LatticesVirtual
- Speaker
- Paige Helms, University of Washington
- Moderator
- Javier Ronquillo Rivera, Bridge to Enter Advanced Mathematics (Virtual)
Abstract
Notable examples of periodic sphere packings include the hexagonal lattice in $\mathbb{R}^2$ which Gauss proved is the densest periodic planar circle packing, and the Leech lattice and $E_8$ in $\mathbb{R}^3$. In this talk, we will explore what a lattice is, and introduce a result by M. Faulhuber and S. Steinerberger which proves another extremal property of the hexagonal lattice, using the fact that it is a critical point in the space of lattices.
-
1:00 - 2:00 pm EDTLunch/Free TimeVirtual
-
2:00 - 3:00 pm EDTMentoring & Career PanelPanel Discussion - Virtual
- Moderator
- Anisah Nu’Man, Spelman College (Virtual)
- Panelists
- Ranthony Edmonds, The Ohio State University (Virtual)
- Garett Jones, Marshfield Clinic Health System (Virtual)
- Ashlee Kalauli, University of California, Santa Barbara (Virtual)
- Roberto Soto, California State University Fullerton (Virtual)
-
3:00 - 3:30 pm EDTEntangled PolynomialsVirtual
- Speaker
- Ashley Pallone, Ohio University
- Moderator
- Paige Helms, University of Washington (Virtual)
Abstract
Using a standard embedding of $K[x]$, the algebra of polynomials with coefficients in a field $K$, into the algebra of row and column finite matrices over $K$, non-trivial factorizations of some irreducible polynomials in $K[x]$ are possible in the larger context. The row and column finite matrices involved in those factorizations resemble polynomials in several ways. We call these matrices \emph{entangled polynomials} as each one of them is induced by a finite number of polynomials. For every fixed $m \in \Z_+$, entangled polynomials induced by $m$ polynomials (the so-called $m$-nomials) form a ring, $K^{m}[x]$. The ring of $1$-nomials is precisely $K[x]$. When $n$ divides $m$, $K^{n}[x]$ is a subring of $K^{m}[x]$. In particular, all rings of $m$-nomials include the polynomials.
Given an algebra $A$ over a field $K$, a basis $\cB$ for $A$ is said to be amenable if one can naturally extend the $A$-module structure on the $K$-vector space $\bigoplus_{b \in \cB} Kb= K^{(B)}$ to the $K$-vector space $\prod_{b \in \cB} Kb = K^{\cB}$. A basis $\cB$ is congenial to another one $\cC$ if infinite linear combinations of elements of $\cB$ translate in a natural way to infinite linear combinations of elements of $\cC$. An amenable basis $\cB$ is simple if it is not properly congenial to any other amenable basis. We will present amenable bases in the ring of all $m$-nomials as well as some results about congeniality in the ring of all $2$-nomials. This will culminate to presenting a simple basis in the ring of all $2$-nomials. -
3:00 - 3:30 pm EDTOn discrete gradient vector fields and Laplacians of simplicial complexesVirtual
- Speaker
- Andrew Tawfeek, University of Washington
- Moderator
- Christopher O'Neill, San Diego State University (Virtual)
Abstract
Discrete Morse theory, a cell complex-analog to smooth Morse theory, has been developed over the past few decades since its original formulation by Forman in 1998. One of the main objects of concern in discrete Morse theory are discrete gradient vector fields on simplicial complexes. We prove that the characteristic polynomial of the Laplacian of a simplicial complex is a special generating function for gradients when the complex is either any graph or a triangulation of an orientable manifold of any dimension.
-
3:30 - 4:00 pm EDTWriting Nilpotent Matrices as CommutatorsVirtual
- Speaker
- Emily Hoopes-Boyd, Kent State University
- Moderator
- Paige Helms, University of Washington (Virtual)
Abstract
The relationship between nilpotent elements and commutators over rings has been studied in detail over the years. We will show that every nilpotent N in M_n(D), the ring of square matrices over a division ring, can be presented as a single commutator, that is, N = AB − BA for some matrices A, B in M_n(D). We will also construct an example illustrating that there exists a prime ring with unity over which some nilpotent matrices cannot be presented as commutators.
-
3:30 - 4:00 pm EDTGraphs Associated with the Factorization Sets of Numerical SemigroupsVirtual
- Speaker
- Mariah Moschetti, San Diego State University
- Moderator
- Anisah Nu’Man, Spelman College (Virtual)
Abstract
A numerical semigroup is a submonoid of the non-negative integers under addition. An important property of numerical semigroups is that their elements may have multiple factorizations. Given an element $n$ in a numerical semigroup $S$, graphs can be constructed using the multiple factorizations of $n$ as vertices. In this talk, we explore the minimal trade graphs of $n$ and the factorization support graph of $n$. The rank of the fundamental group of these graphs can be found by counting how many edges are present in each.
-
4:05 - 5:05 pm EDTCombinatorial Techniques for the Study of Toric RingsVirtual
- Speaker
- Gabriel Sosa Castillo, Colgate University
- Moderator
- Shannon Talbott, Moravian College (Virtual)
Abstract
Given a field $K$, a polynomial ring $R=K[X_1, \dots, X_n]$, and a set of monomials $m_i=X_1^{a_{i,1}}\dots X_n^{a_{i,n}}$ of $R$, the subring of $R$ generated by $\{m_i, \dots, m_s\}$, i.e. $S=K[m_1,\dots, m_s]$, is called a toric ring.
The existence of the epimorphism \[ \begin{array}{rccc} \varphi: & K[T_1, \dots, T_s] & \rightarrow & K[m_1,\dots, m_s] \\ & T_i & \rightarrow & m_i \end{array} \] allows for the study of the toric ring $S$ by instead focusing on the ideal $I=\ker \varphi$. This ideal, known as the toric ideal, happens to be prime and is generated by binomials.
Rees, and multi-Rees algebras, of monomial ideals are toric rings whose study is of special interest because of its connection to Algebraic Geometry. A fundamental (open) question concerns describing explicitly a set of binomial generators (i.e. the defining equations) for the toric ideal associated to a Rees, or multi-Rees, algebra.
In this talk, we will discuss techniques that have allowed for a complete description of the defining equations when the monomial ideals associated to the Rees, or multi-Ress, algebra possess nice combinatorial properties. -
5:05 - 5:45 pm EDTClosing RemarksVirtual
- Christopher O'Neill, San Diego State University
Friday, April 30, 2021
-
11:45 am - 12:00 pm EDTNetworking/ Coffee BreakCoffee Break - Virtual
-
12:00 - 12:30 pm EDTOptimizing Polytopal Norms with Respect to Numerical SemigroupsVirtual
- Speaker
- Brittney Marsters, San Diego State University
- Moderator
- Christopher O'Neill, San Diego State University (Virtual)
Abstract
Fix a polytope P. The polytopal norm of a point with respect to P is the smallest dilation factor t such that tP contains this point. A numerical semigroup S is a subset of the non-negative integers that contains zero and is closed under addition. Elements of S can be expressed as linear combinations of the generators of S where coefficients are taken to be non-negative integers. To each of these expressions, we associate a point that we call a factorization of this element in S. During this talk, we will discuss optimizing polytopal norms defined on sets of factorizations of elements of numerical semigroups. We will present results classifying the eventually quasilinear relationship for max and min polytopal norms for rational polytopes of dimension k.
-
12:00 - 12:30 pm EDTOn Computing Modular forms over Imaginary Quadratic FieldsVirtual
- Speaker
- Kalani Thalagoda, University Of North Carolina at Greensboro
- Moderator
- Shannon Talbott, Moravian College (Virtual)
Abstract
Classical Modular Forms are holomorphic functions on the complex upper half-plane satisfying functional equations with respect to congruence subgroups of SL(2, Z). Bianchi Modular forms are a generalization of this to imaginary quadratic fields. Similar to the classical case, there is a Hecke module isomorphism between this space and certain classes in the cohomology of the corresponding congruence subgroup. This gives us a technique to compute modular forms as Hecke eigensystems.
In this talk, I will go over the techniques used to compute classical modular forms and how some of those can also be modified to work for the Bianchi case. With explicit examples, I will demonstrate some similarities and differences between the Bianchi case to the classical case. -
12:30 - 1:00 pm EDTAn Introduction to Parking FunctionsVirtual
- Speaker
- Kimberly Hadaway, Williams College
- Moderator
- Christopher O'Neill, San Diego State University (Virtual)
Abstract
In 1966, Alan G. Konheim and Benjamin Weiss defined ``parking functions'' as follows: We have a one-way, one-lane street with a dead end and $n$ parking spaces, numbered in consecutive order from 1 to $n$, and we have $n$ cars in line waiting to park. Each driver has a favorite (not necessarily distinct) parking spot, which we call its \emph{preference}. We order these preferences in a \emph{preference vector}. As each car parks, it drives to its preferred spot. If that spot is open, the car parks there; if not, it parks in the next available spot. If a preference vector allows all cars to park, we call it a \emph{parking function}. In 1974, Henry O. Pollak proved the total number of parking functions of length $n$, meaning there are $n$ parking spots and n cars, to be $(n+1)^{n-1}$. In this presentation, we describe a recursive formula, expound Pollak's succinct six-sentence proof of an explicit formula, and conclude with a discussion of other parking function generalizations.
-
12:30 - 1:00 pm EDTFiber Bundles and Group ExtensionsVirtual
- Speaker
- Jonathan Alcaraz, University of California, Riverside
- Moderator
- Shannon Talbott, Moravian College (Virtual)
Abstract
In the world of topology, we like to study objects called fiber bundles, which act as a twisted version of a product. Through the fundamental group, these objects usually induce group extensions, which are a twisted version of the direct product of groups. We will use this connection to explore examples of spaces which admit multiple distinct fiberings.
-
1:00 - 2:00 pm EDTLunch/Free TimeVirtual
-
2:00 - 2:30 pm EDTBreak/ Informal NetworkingCoffee Break - Virtual
-
2:30 - 3:00 pm EDTA Monoid Structure on the Set of all Binary Operations over a Fixed Set and some of its PropertiesVirtual
- Speaker
- Asiyeh Rafieipour, Ohio University
- Moderator
- Anisah Nu’Man, Spelman College (Virtual)
Abstract
Given a set $S$, we consider an operation $\triangleleft$ on the set $\mathcal{M}(S)$ where $\mathcal{M}(S)=\{ \ast | \ast \text{ is a binary operation on } S\}$ such that $(\mathcal{M}(S), \triangleleft)$ is a monoid. We consider several properties of this monoid including the fact that it has all subsets of the form $out(\ast)=\{ \circ \in \mathcal{M}(S)| \ast \text { distributes over } \circ \}$ as submonoids, a complete characterization of its group of units and of a subgroup of its group of automorphisms, induced by permutations. In addition, we introduce for the case when $|S|< \infty$, a user-friendly representation of the elements of $\mathcal{M}(S)$. \\ This talk reports some results from a paper with S.R. L\'opez-Permouth and Isaac Owusu Mensah that is currently under consideration for publication.
-
2:30 - 3:00 pm EDTSome Aspects of Generalized Covering Space TheoryVirtual
- Speaker
- Jacob Garcia, University of California, Riverside
- Moderator
- Paige Helms, University of Washington (Virtual)
Abstract
Covering space theory is a classical tool used to characterize the geometry and topology of spaces. It seeks to separate the main geometric features from certain algebraic properties. For each conjugacy class of a subgroup of the fundamental group, it supplies a corresponding covering of the underlying space and encodes the interplay between algebra and geometry via group actions. The full applicability of this theory is limited to spaces that are, in some sense, locally simple. However, many modern areas of mathematics, such as fractal geometry, deal with spaces of high local complexity. This has stimulated much recent research into generalizing covering space theory by weakening the covering requirement while maintaining most of the classical utility. This talk will focus on the relationships between generalized covering projections, fibrations with unique path lifting, separation properties of the fibers, and continuity of the monodromy.
-
3:00 - 3:30 pm EDTAlgebras such that The Basic Modules are Isomorphic Then the Bases Are Mutually CongenialVirtual
- Speaker
- Majed Zailaee, Ohio University
- Moderator
- Anisah Nu’Man, Spelman College (Virtual)
Abstract
The study of recently introduced notion of amenability and congeniality of infinite dimensional algebras is furthered. A basis $\mathcal{B}$ of infinite dimensional $F$- algebra is said to be amenable if $F^{\mathcal{B}}$ can be made into an $A$-module in a natural way. Mutual congeniality is a relation that serves to identify cases when different bases yields isomorphic $A$-modules. If a basis $\mathcal{B}$ is congenial to the basis $\mathcal{C}$ but $\mathcal{C}$ is not congenial to the basis $\mathcal{B}$, then we say $\mathcal{B}$ is properly congenial to $\mathcal{C}$. An amenable basis $\mathcal{B}$ is said to be simple if is not properly congenial to any other amenable basis. Here we study the relations between the isomorphic basic modules and the simple basis.
-
3:00 - 3:30 pm EDTAn Exploration of the Curve ComplexVirtual
- Speaker
- Brandis Whitfield, Temple University
- Moderator
- Paige Helms, University of Washington (Virtual)
Abstract
Given a surface $S$, its associated curve complex, $\mathcal{C}(S)$, is a simplicial complex which encodes topological information on the set of homotopy classes of loops on S. In this introductory talk, we'll explore combinatorial properties of its underlying graph and its value to the topology, geometry and mapping class group of a hyperbolic surface.
-
3:45 - 4:45 pm EDTDGS- Trisections of 4-manifoldsVirtual
- Speaker
- Jose Aranda Cuevas, University of Iowa
- Moderator
- Ty Frazier, University of MInnesota (Virtual)
Abstract
In 2016, D. Gay and R. Kirby proved that $M$ can be decomposed as the union of three 4-dimensional 1-handlebodies with pairwise intersection 3-dimensional handlebodies and triple intersection a closed orientable surface of genus $g$. Such decomposition is called a trisection of genus $g$ of $M$. In 2018, M. Chu and S. Tillmann used this to give a lower bound for the trisection genus of a closed 4-manifold in terms of the Euler characteristic of $M$ and the rank of its fundamental group. In this talk, we show that given a group $G$, there exist a 4-manifold $M$ with fundamental group $G$ with trisection genus achieving Chu-Tillmann's lower bound.
-
4:45 - 5:00 pm EDTClosing RemarksVirtual
- Anisah Nu’Man, Spelman College
-
5:00 - 5:45 pm EDTNetworking EventNetworking Event - Virtual
All event times are listed in ICERM local time in Providence, RI (Eastern Standard Time / UTC-5).
All event times are listed in .
ICERM local time in Providence, RI is Eastern Standard Time (UTC-5). Would you like to switch back to ICERM time or choose a different custom timezone?